B ES III

Monica Bertani
R. Baldini Ferroli, S. Pacetti, A. Zallo
D. Alberto, M. Destefanis, M. Greco, M. Maggiora, S. Spataro

Commissione Scientifica Nazionale 1

17-19 maggio 2010, Torino

Design and Installation

2

B E S III

Available space

Available space

Front view
 (cross section)

Side view

	"Slot" detector

- Two 3×2 matrices of $1.5 \times 1.5 \times 16 \mathrm{~cm}^{3}$ of LYSO bars
- Total volume $864 \mathrm{~cm}^{3}$
- Readout with 4 PMmultianode
- Possible Luminosity-monitor "Slot" detector in the last 7 cm

Pb-Scintillator design à la Kloe

Front view

- Along z axis:

320 grooved 0.5 mm thick lead foils alternated with layers of cladded 1 mm diameter scintillating fibers

- Readout with PMmultianode

Pb-Scintillator "Spaghetti" design

Front view

(cross section)

- Along y axis:

120 grooved 0.5 mm thick lead foils alternated with layers of cladded 1 mm diameter scintillating fibers

- Readout with PMmultianode

Physical properties of materials

Material	LYSO	Pb-Scint
Density (g/cm $\left.{ }^{3}\right)$	7.4	5.3
Radiation Length (cm)	1.1	1.6
Molière Radius (cm)	1.9	2.9
Decay Constant (ns)	$40-44$	2.4
Peak Emission (nm)	428	460
Radiation Hardness (rad)	$\sim 10^{8}$	$\sim 10^{6}$

Energy Resolution

LYSO GEANT4 simulation $_{1}$

Deposited energy/E E_{γ}

Log-normal distribution
$\begin{aligned} & \frac{d f}{d E}=\frac{\eta}{\sqrt{2 \pi} \sigma_{E} \sigma_{0}} e^{-\frac{1}{2}\left[\frac{\ln ^{2}\left(1-\frac{\eta\left(E-E_{0}\right)}{\sigma_{E}}\right)}{\sigma_{0}^{2}}+\sigma_{0}^{2}\right]} \\ & \sigma_{0}=\frac{2}{2.35} \ln \left[\eta \frac{2.35}{2}+\sqrt{1+\left(\eta \frac{2.35}{2}\right)^{2}}\right]\end{aligned} \sigma_{E}=\frac{\mathrm{FWHM}}{2.35}$

$E_{\gamma}(\mathrm{GeV})$	$\sigma_{E_{\gamma}} / E_{\gamma}$ Central (yellow square)
$1.0-1.4$	3.6%
$0.2-0.4$	4.9%

LYSO GEANT4 simulation $_{2}$

Deposited energy/E ${ }_{\gamma}$

$E_{\gamma}(\mathrm{GeV})$	$\sigma_{E_{\gamma}} / E_{\gamma}$ Central (yellow square)
$1.0-1.4$	26.0%
$0.2-0.4$	32.0%

Energy resolution, the ISR case

	LYSO	Pb-Scint
$E_{\gamma}(\mathrm{GeV})$	$\sigma_{E_{\gamma}} / E_{\gamma}$	$\sigma_{E_{\gamma}} / E_{\gamma}$
1.5	5.7%	12.9%
1.0	6.4%	15.1%
0.5	7.8%	20.1%

Energy resolution for ISR

	LYSO	Pb-Scint
C_{1}	4.3%	6.9%
C_{2}	4.6%	13.4%

Bremsstrahlung simulation

- $E_{\text {beam }}=1.89 \mathrm{GeV}$
- $E_{\gamma}^{\text {min }}=50 \mathrm{MeV}$
- $\sigma_{\mathrm{Bre}}(4 \pi)=353 \mathrm{mb}$
- $\sigma_{\text {Bre }}($ ZDD $)=10 \mathrm{mb}$
- $\mathcal{L}=8 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- ISR in ZDD 13.7\% of total solid angle
- Bremsstrahlung in ZDD 2.8\% of total solid angle
- Bremsstrahlung rate in a single ZDD element (upper or lower):

$$
\begin{aligned}
& 800 \mathrm{kHz} \text { at } \mathcal{L}=3 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
& 2.1 \mathrm{MHz} \text { at } \mathcal{L}=8 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
\end{aligned}
$$

Bremsstrahlung rate

$$
\mathcal{L}=3 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}
$$

Bremsstrahlung rate in $10 \mathrm{MeV} E_{\gamma}$ intervals

Integrated
Bremsstrahlung rate

Pileup effect 1 : signal generation

Maximum Bremsstrahlung rate expected 2.1 MHz (ZDD/4)

- Flash ADC: $500 \mathrm{MS} / \mathrm{s}, 8$-bit resolution
- LYSO signal:

$$
\text { Intensity }=e^{-t / \tau_{d}}\left(1-e^{-t / \tau_{r}}\right)
$$

rising time $\tau_{r}=2 \mathrm{~ns}$, decay time $\tau_{d}=40 \mathrm{~ns}$

Probability of pileup as a function of the Bremsstrahlung rate

Probability of pileup as a function of the Bremsstrahlung rate

Pileup effect ${ }_{2}$: probability

Probability of pileup as a function of the Bremsstrahlung rate

Probability of pileup as a function of the Bremsstrahlung rate

Pileup effect ${ }_{2}$: probability

Probability of pileup as a function of the Bremsstrahlung rate

Pileup effect 3 : evaluation

- 500 events have been generated at various rates
- E.g. at 2500 kHz:

158 (31.6\%) have $\Delta t_{\mathrm{ISR}}<160 \mathrm{~ns} \sim 4$ decay times

- We fit these signals to verify our capability to distinguish ISR and Bremsstrahlung contributions

Pileup effect $_{4}$ in $T=160 \mathrm{~ns}$

The fit goodness is expressed as $\left(\sigma_{E} / E\right)_{\text {fit }}=\left(E_{\text {gen }}-E_{\text {fit }}\right) / E_{\text {gen }}$, where $E_{\text {gen }}$ is the generated ISR amplitude and $E_{\text {fit }}$ is its fitted value

We consider as a reference accuracies: $\left\{\begin{array}{l}7 \% \sim \frac{\sigma_{E}}{E} \text { LYSO } \\ 15 \% \sim \frac{\sigma_{E}}{E} \text { Pb-Scint }\end{array}\right.$

- $E_{\gamma_{\text {IS }}} \in[0.5 \mathrm{GeV}, 1.5 \mathrm{GeV}]$, mild dependence on $E_{\gamma_{\text {IS }}}$

rate $(\mathbf{k H z})$	Pileup in 160 ns $(\%)$	$\left(\sigma_{E} / E\right)_{\mathrm{it}}>\mathbf{7 \%}$ $(\%)$	$\left(\sigma_{E} / E\right)_{\mathrm{fit}}>15 \%$ $(\%)$
2500	30	9.4	4.8
2100	26	8.1	4.2
1000	14	4.3	2.2
800	10	3.2	1.6

Physics

The $n \bar{n} \gamma_{\text {IS }}$ physics case

- $\mathbf{e}^{+} \mathbf{e}^{-} \rightarrow n \bar{n} \gamma_{\text {IS }}$ at a center of mass energy: $E_{c . m .}=3.77 \mathrm{GeV}$
- Initial state photon energy range: $50 \mathrm{MeV} \leq E_{\gamma_{\mathrm{IS}}} \leq \frac{E_{c . m .}}{2}\left(1-\frac{4 M_{n}^{2}}{E_{c . m .}^{2}}\right)$
- Beam pipe suppresses sinc. rad. bkg. and $\gamma_{\text {Is }}$ with $E_{\gamma_{\text {IS }}}<50 \mathrm{MeV}$
- रis in ZDD and only antineutron detected in BESIII

- 10000 events with $\gamma_{\text {IS }} \rightarrow$ ZDD
$M_{\text {had }}=E_{\text {c.m. }} \sqrt{1-\frac{2 E_{\gamma_{l S}}}{E_{\text {c.m. }}}}$
Geometrical cut:
$\bar{n} \rightarrow$ BESIII
No constraint in n

The $n \bar{n} \gamma_{\text {IS }}$ physics case

- $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow n \bar{n} \gamma_{\text {IS }}$ at a center of mass energy: $E_{\text {c.m. }}=3.77 \mathrm{GeV}$
- Initial state photon energy range: $50 \mathrm{MeV} \leq E_{\gamma_{\mathrm{IS}}} \leq \frac{E_{c . m .}}{2}\left(1-\frac{4 M_{n}^{2}}{E_{c . m .}^{2}}\right)$
- Beam pipe suppresses sinc. rad. bkg. and $\gamma_{\text {Is }}$ with $E_{\gamma_{\text {IS }}}<50 \mathrm{MeV}$
- 才is in ZDD and only antineutron detected in BESIII

10000 events with $\gamma_{\text {IS }} \rightarrow$ ZDD
$M_{\text {had }}=E_{c . m .} \sqrt{1-\frac{2 E_{\gamma_{I S}}}{E_{c . m}}}$

- Geometrical cut:
- $\bar{n} \rightarrow$ BESIII
- No constraint in n

The $n \bar{\pi} \gamma_{\text {Is }}$ physics case: kinematic fit

Inputs (6)

- \bar{n} 3-momentum (TOF)
$\gamma_{\text {IS }} 3$-momentum (ZDD)

Constraints (4)

4-momentum cons.

Unknowns (3)

- \boldsymbol{n} 4-momentum

$$
\chi^{2}=\sum_{\text {tracks }} \sum_{i} \frac{\left(p_{i}^{\text {exp }}-p_{i t i t}\right)^{2}}{\sigma_{P_{i}}^{2}}
$$

The $n \bar{n} \gamma_{\text {Is }}$ physics case: kinematic fit

Inputs (6)

- \bar{n} 3-momentum (TOF)
- $\gamma_{\text {Is }} 3$-momentum (ZDD)

Constraints (4)

4-momentum cons.

Unknowns (3)

- $n 4$-momentum

$$
\chi^{2}=\sum_{\text {tracks }} \sum_{i} \frac{\left(p_{i}^{\text {exp }}-p_{i l}^{\text {fit }}\right)^{2}}{\sigma_{p_{i}}^{2}}
$$

- $\boldsymbol{e}^{+} \boldsymbol{e}^{-} \rightarrow \boldsymbol{n} \bar{n} \pi^{0}$ is one of the main backgrounds

Assuming $\sigma\left(e^{+} e^{-} \rightarrow n \bar{n} \pi^{0}\right) \simeq \sigma\left(e^{+} e^{-} \rightarrow p \bar{p} \pi^{0}\right)$:

$$
\frac{\operatorname{Ev}\left(n \bar{n} \pi^{0}\right)}{\operatorname{Ev}(n \bar{n} \gamma)}\left[M_{\Upsilon(4 S)}\right] \simeq R_{B A B A R}=\frac{\operatorname{Ev}\left(p \bar{p} \pi^{0}\right)}{\operatorname{Ev}(p \bar{p} \gamma)}\left[M_{\Upsilon(4 S)}\right]=0.06
$$

- In BESIII, directly at the $\boldsymbol{\psi}(\mathbf{3 7 7 0})$ mass:

$$
\gamma_{\mathrm{IS}} \longrightarrow \mathbf{Z D D}
$$

ZDD solid angle BESIII solid angle

$$
\Rightarrow \frac{\operatorname{Ev}\left(n \bar{n} \pi^{0}, \pi^{0} \rightarrow 0^{0}\right)}{\operatorname{Ev}\left(n \bar{n} \gamma, \gamma \rightarrow 0^{\circ}\right)}=0.0008
$$

$\frac{2 \cdot\left(2 \cdot 4.5 \cdot 3 / 349^{2}\right)}{4 \pi \cos \theta_{\min }}=3.8 \cdot 10^{-5}$
> $e^{+} e^{-} \rightarrow n \bar{n} \pi^{0} \gamma \mathrm{IS}$
> is a severe background having the IS photon

Yields from BABAR

- After geometrical cut
 High contamination at high $M_{\text {had }}$

The $n \bar{\pi} \pi^{0} \gamma_{\text {IS }}$ background reduction

- π^{0} detection in BESIII: at least one of the π^{0} photons with $E_{\gamma}>50 \mathrm{MeV}$ in BESIII not in a 200 mrad cone around \bar{n} direction

Kinematic fit:

- π^{0} detection in BESIII: at least one of the π^{0} photons with $E_{\gamma}>50 \mathrm{MeV}$ in BESIII not in a 200 mrad cone around \bar{n} direction

Kinematic fit: $\quad \chi^{2} \leq 10$

- π^{0} detection in BESIII: at least one of the π^{0} photons with $E_{\gamma}>50 \mathrm{MeV}$ in BESIII not in a 200 mrad cone around \bar{n} direction
(Kinematic fit: $\chi^{2} \leq 10$

- π^{0} detection in BESIII: at least one of the π^{0} photons with $E_{\gamma}>50 \mathrm{MeV}$ in BESIII not in a 200 mrad cone around \bar{n} direction

Kinematic fit: $\quad \chi^{2} \leq 10$

Energy resolution in $\bar{n} \gamma_{\text {Is }}$ missing mass

- Events are generated with fixed value of $M_{\text {had }}=E_{c . m .} \sqrt{1-2 E_{\gamma_{\text {IS }}} / E_{c . m}}$.
- The $\bar{n} \gamma_{I S}$ missing mass is obtained only from experimental data

Energy resolution in $M_{\text {had }}$ slices

- Events are generated with fixed value of $M_{\text {had }}=E_{c . m .} \sqrt{1-2 E_{\gamma_{\text {IS }}} / E_{c . m}}$.
- $M_{\text {had }}$ is reconstructed using the kinematic fit procedure

$M_{\text {had }}=3.2 \mathrm{GeV}-E_{\gamma_{\text {IS }}}=0.5 \mathrm{GeV}$

Energy resolutions

(Two-gaussian fit: $\sigma=$
half width of the area, symmetric w.r.t. the center of mass of the distributions, which contains the 68% of events

Width of the $\bar{n} \gamma_{\text {IS }}$ miss. mass

σ_{n} is dominated by $\delta p_{\bar{n}}$
small $M_{\text {had }} \Rightarrow$ large $E_{\gamma_{\mid S}} \Rightarrow$ small $\delta E_{\gamma_{\mid S}}$

Energy resolution in $\boldsymbol{M}_{\text {had }}$ bins

$\sigma_{\text {tot }}$ is dominated by $\delta E_{\text {रIs }}$
large $M_{\text {had }} \Rightarrow$ small $E_{\gamma_{\mid S}} \Rightarrow$ large $\delta E_{\gamma_{\mid S}}$

Expected events

One year of data taking: $\quad T=1.5 \times 10^{7} \mathrm{~s}$
(Average luminosity: $\overline{\mathcal{L}}=1.5 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
Detection efficiency:

- Center of mass energy:
$E_{\text {c.m. }}=3.77 \mathrm{GeV}$

Other possible physics items $R_{\text {had }}$ in the 1-3 GeV region

- Accessible had-CoM energy: $E_{\text {had }}=\sqrt{E_{\text {coll }}^{2}-2 E_{\text {coll }} E_{\gamma / \mathrm{s}}}$
- PDG: $\gamma \gamma 2$ and BESII ($2-3 \mathrm{GeV}$) only
- ISR: small systematic error versus Ehad
- ISR on ZDD: negligible π^{0} background
- $\left|\Delta E_{\text {had }}\right|=\left|\Delta E_{\gamma_{\text {IS }}}\right| E_{\text {coll }} / E_{\text {had }}$: feasible only if $E_{\text {coll }} / E_{\text {had }} \sim 1$ (not for B-factories)
- BESIII: $E_{\text {coll }} \sim 3.5 \mathrm{GeV} \Rightarrow E_{\text {had }} \simeq 1-3 \mathrm{GeV}$
- LYSO: $\left|\Delta E_{\text {had }}\right| \simeq 150 \mathrm{MeV}$
- Pb-Scint: $\left|\triangle E_{\text {had }}\right| \simeq 300 \mathrm{MeV}$
- $\left|\Delta E_{\text {had }}\right|$ reduced by deconvolution techniques

Radiation hardness

Radiation damages mostly due to Bremsstrahlung:

- One year of data taking:
- Average luminosity:
- Center of mass energy:

$$
\begin{array}{r}
\sigma_{\text {Bre }}(\text { ZDD } / 4)=2.6 \mathrm{mb} \\
T=1.5 \times 10^{7} \mathrm{~s} \\
\overline{\mathcal{L}}=1.5 \times 10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1} \\
E_{\text {c.m. }}=3.77 \mathrm{GeV}
\end{array}
$$

Declared hardness

- LYSO $\sim 10^{8}$ rad
- Scint. $\sim 10^{6}$ rad

Costs and agenda

Costi e richieste per il 2010

LYSO

Componente	quantità	costo (KEuro)
LYSO sICCAS	$24+4$	30
PMmultianode	4	10
TDC $(24$ ch $)$	1	5
FADC $(8 \mathrm{ch})$	3	15
Crate CAEN	1	5
HV supply	1	10
	Totale	$\mathbf{7 5}$

Richieste per il 2010

- LYSO 30 KEuro
- Consumo 2 KEuro
- PMmultianode in prestito da Kloe

Totale
32 KEuro

Pb-Scint

Componente	quantità	costo (KEuro)
Pb-Scint	Kloe modulo zero	
PMmultianode	12	$\mathbf{3 0}$
ADC $(24 \mathrm{ch})$	1	$\mathbf{5}$
TDC $(24 \mathrm{ch})$	1	$\mathbf{5}$
Crate CAEN	1	$\mathbf{5}$
HV supply	1	$\mathbf{1 0}$
Totale		

Richieste per il 2010

- Taglio e fresatura........ 2 KEuro
- Sviluppo elettronica 2 KEuro
- Consumo 1 KEuro
- PMmultianode in prestito da Kloe

Totale 5 KEuro

Pro/contro

	LYSO	Pb-Scint
Time decay	slow	fast
Rad. hardness	ok	limit
$\Delta M_{\text {had }}$ (MeV)	150	350
Feasibility	easy	Kloe modulo zero
Costs (KEuro)	74	55 (if Kloe modulo is working)

Milestones

LYSO Option

- Agosto 2010: consegna cristalli
- Settembre 2010: assemblaggio
- Ottobre 2010 ?: test rate e PM (Kloe2)
- \leq Dicembre 2010: definizione elettronica
- Gennaio-Febbraio 2011: consegna PM Hamamatzu
- Febbraio 2011: consegna elettronica CAEN
- Marzo-Giugno 2011: test
- Agosto 2011: installazione a BESIII

Pb-Scint Option

- Luglio 2010: taglio modulo zero
- Giugno-Settembre 2010: assemblaggio
- \leq Dicembre 2010: definizione elettronica e test BTF per Pb-Scint
- Gennaio-Febbraio 2011: consegna PM Hamamatzu
- Febbraio 2011: consegna elettronica CAEN
- Marzo-Giugno 2011: test
- Agosto 2011: installazione a BESIII

