

Commissione Scientifica Nazionale 1

17-19 maggio 2010, Torino

Design and Installation

BESIII

BESIII and ZDD

Available space

Available space

- Two 3×2 matrices of $1.5 \times 1.5 \times 16$ cm³ of LYSO bars
- Total volume 864 cm³
- Readout with 4 PMmultianode
- Possible Luminosity-monitor "Slot" detector in the last 7 cm

PMmultianode

Pb-Scintillator design à la Kloe

CSN1 Torino Mil 19 maggio, 2010

Pb-Scintillator "Spaghetti" design

Physical properties of materials

Material	LYSO	Pb-Scint
Density (g/cm ³)	7.4	5.3
Radiation Length (cm)	1.1	1.6
Molière Radius (cm)	1.9	2.9
Decay Constant (ns)	40-44	2.4
Peak Emission (nm)	428	460
Radiation Hardness (rad)	$\sim 10^{8}$	$\sim 10^{6}$

Energy Resolution

LYSO GEANT4 simulation₁

Deposited energy/ E_{γ}

CSN1 Torino Mil 19 maggio, 2010

BESIII

LYSO GEANT4 simulation₂

CSN1 Torino 🬆 19 maggio, 2010

BESIII

Energy resolution, the ISR case

Bremsstrahlung simulation

- ISR in ZDD 13.7% of total solid angle
- Bremsstrahlung in ZDD 2.8% of total solid angle
- Bremsstrahlung rate in a single ZDD element (upper or lower):

800 kHz at
$$\mathcal{L} = 3 \times 10^{32}$$
 cm⁻² s⁻¹
2.1 MHz at $\mathcal{L} = 8 \times 10^{32}$ cm⁻² s⁻¹

Bremsstrahlung rate

Pileup effect₁: signal generation

Maximum Bremsstrahlung rate expected 2.1 MHz (ZDD/4)

- Flash ADC: 500 MS/s, 8-bit resolution
- LYSO signal:

Intensity =
$$e^{-t/\tau_d}(1 - e^{-t/\tau_r})$$

rising time $\tau_r = 2$ ns, decay time $\tau_d = 40$ ns

Pileup effect₃: evaluation

E.g. at 2500 kHz: 158 (31.6%) have ∆t_{ISR} < 160 ns ~ 4 decay times</p>

We fit these signals to verify our capability to distinguish ISR and Bremsstrahlung contributions

Pileup effect₄ in T = 160 ns

🌒 W

• The fit goodness is expressed as $(\sigma_E/E)_{\text{fit}} = (E_{\text{gen}} - E_{\text{fit}})/E_{\text{gen}}$, where E_{gen} is the generated ISR amplitude and E_{fit} is its fitted value

e consider as a reference accuracies:
$$\begin{cases} 7\% \sim \frac{\sigma_E}{E} \text{ LYSO} \\ 15\% \sim \frac{\sigma_E}{E} \text{ Pb-Scint} \end{cases}$$

 $E_{\gamma_{\mathsf{IS}}} \in [0.5 \, \mathsf{GeV}, 1.5 \, \mathsf{GeV}], \text{ mild dependence on } E_{\gamma_{\mathsf{IS}}}$

rate	Pileup in 160 ns	$(\sigma_E/E)_{\rm fit} >$ 7%	$(\sigma_{E}/E)_{ m fit} >$ 15%
(kHz)	(%)	(%)	(%)
2500	30	9.4	4.8
2100	26	8.1	4.2
1000	14	4.3	2.2
800	10	3.2	1.6

Physics

The $n\overline{n}\gamma_{1S}$ physics case

- $e^+e^- \rightarrow n\bar{n}\gamma_{1S}$ at a center of mass energy: $E_{c,m} = 3.77$ GeV
- Initial state photon energy range: 50 MeV $\leq E_{\gamma_{\rm IS}} \leq$
- Beam pipe suppresses sinc. rad. bkg. and γ_{IS} with $E_{\gamma_{IS}} < 50$ MeV
- $\gamma_{\rm IS}$ in ZDD and only antineutron detected in BESIII

10000 events with $\gamma_{\rm IS} \rightarrow {\rm ZDD}$

$$\mathbf{M}_{had} = \mathbf{E}_{c.m.} \sqrt{1 - \frac{2\mathbf{E}_{\gamma_{\text{IS}}}}{\mathbf{E}_{c.m.}}}$$

The $n\overline{n}\gamma_{\mathsf{IS}}$ physics case

- $e^+e^- \rightarrow n\overline{n}_{\gamma_{\rm IS}}$ at a center of mass energy: $E_{c.m.} = 3.77 \, {\rm GeV}$
- Initial state photon energy range: 50 MeV $\leq E_{\gamma_{\text{IS}}} \leq \frac{E_{c.m.}}{2}$ (1
- Beam pipe suppresses sinc. rad. bkg. and $\gamma_{\rm IS}$ with $E_{\gamma_{\rm IS}} <$ 50 MeV
- γ_{IS} in ZDD and only antineutron detected in BESIII

I 10000 events with $\gamma_{\rm IS} \rightarrow {\rm ZDD}$

$$M_{had} = E_{c.m.} \sqrt{1 - \frac{2E_{\gamma_{IS}}}{E_{c.m.}}}$$

- Geometrical cut:
 - $\blacksquare \ \overline{n} \to \mathsf{BESIII}$
 - No constraint in n

The $n\overline{n}\gamma_{IS}$ physics case: kinematic fit

The $n\overline{n}\gamma_{IS}$ physics case: kinematic fit

The $n\overline{n}\pi^0$ background

• $e^+e^- \rightarrow n\overline{n}\pi^0$ is one of the main backgrounds

Assuming
$$\sigma(e^+e^- \to n\overline{n}\pi^0) \simeq \sigma(e^+e^- \to p\overline{p}\pi^0)$$
:
 $\frac{\mathsf{Ev}(n\overline{n}\pi^0)}{\mathsf{Ev}(n\overline{n}\gamma)} \left[M_{\Upsilon(4S)} \right] \simeq R_{BABAR} = \frac{\mathsf{Ev}(p\overline{p}\pi^0)}{\mathsf{Ev}(p\overline{p}\gamma)} \left[M_{\Upsilon(4S)} \right] = 0.06$

In **BESIII**, directly at the ψ (3770) mass:

$$R_{\text{BESIII}} = 0.06 \times \underbrace{\left(\frac{0.012}{3 \times 10^{-6}}\right)}_{p\bar{p}\pi^{0} \text{ cross section ratio}} \times \underbrace{\left(\frac{1}{10.7}\right)}_{\text{Lum. ratio}} = 22.4$$

$$\gamma_{\text{IS}} \rightarrow \text{ZDD}$$

$$\underbrace{\text{ZDD solid angle}}_{\text{BESIII solid angle}}$$

$$\frac{2 \cdot (2 \cdot 4.5 \cdot 3/349^{2})}{4\pi \cos \theta_{\min}} = 3.8 \cdot 10^{-5}$$

$$\Longrightarrow \underbrace{\frac{\text{Ev}(n\bar{n}\pi^{0}, \pi^{0} \rightarrow 0^{o})}{\text{Ev}(n\bar{n}\gamma, \gamma \rightarrow 0^{o})} = 0.0008$$

The $n\overline{n}\pi^0\gamma_{\rm IS}$ background

 π^0 detection in BESIII: at least one of the π^0 photons with E_{γ} >50 MeV in BESIII not in a 200 mrad cone around n direction

Kinematic fit:

 $\chi^{2} < 10$

 π^0 detection in BESIII: at least one of the π^0 photons with E_{γ} >50 MeV in BESIII not in a 200 mrad cone around n direction

Kinematic fit:

 $\chi^{2} < 10$

 $\frac{\pi^{0} \text{ detection in BESIII}}{\text{not in a 200 mrad cone around } \overline{n} \text{ direction}}$

Kinematic fit:

 $\chi^2 \leq 10$

Energy resolution in $\overline{n}\gamma_{IS}$ missing mass

Events are generated with fixed value of $M_{had} = E_{c.m.} \sqrt{1 - 2E_{\gamma_{IS}}/E_{c.m.}}$

The $\overline{n}\gamma_{IS}$ missing mass is obtained only from experimental data

CSN1 Torino 🌆 19 maggio, 2010

BESIII

Energy resolution in *M*_{had} slices

Events are generated with fixed value of $M_{had} = E_{c.m.} \sqrt{1 - 2E_{\gamma_{IS}}/E_{c.m.}}$

M_{had} is reconstructed using the kinematic fit procedure

CSN1 Torino 🌆 19 maggio, 2010

BESIII

Energy resolutions

Two-gaussian fit: σ =

half width of the area, symmetric w.r.t. the center of mass of the distributions, which contains the 68% of events

Expected events

- One year of data taking: $T = 1.5 \times 10^7 s$
- Average luminosity: $\overline{\mathcal{L}} = 1.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- Detection efficiency: $\epsilon = 0.5$
- Center of mass energy: E_{c.m.} = 3.77 GeV

Other possible physics items R_{had} in the 1-3 GeV region

- Accessible had-CoM energy: $E_{had} = \sqrt{E_{coll}^2 2E_{coll}E_{\gamma_{lS}}}$
- PDG: $\gamma\gamma2$ and BESII (2-3 GeV) only
- ISR: small systematic error versus *E*_{had}
 ISR on ZDD: negligible π⁰ background

እስስስ

- LYSO: $|\Delta E_{had}| \simeq 150 \text{ MeV}$
- Pb-Scint: $|\Delta E_{had}| \simeq 300 \text{ MeV}$
- □ |∆E_{had}| reduced by deconvolution techniques

Radiation hardness

٩	Radiation damages mostly due to Bremsstrahlung:	$\sigma_{Bre}(ZDD/4) = 2.6\ mb$
٩	One year of data taking:	$T=1.5 imes10^7~ m s$
	Average luminosity:	$\overline{\mathcal{L}} = 1.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
	Center of mass energy:	<i>E_{c.m.}</i> = 3.77 GeV

Declared hardness

• LYSO
$$\sim 10^8$$
 rad

• Scint. $\sim 10^6$ rad

Costs and agenda

BESIII

Costi e richieste per il 2010

LYSO

Componente	quantità	costo (KEuro)
LYSO SICCAS	24 + 4	30
PMmultianode	4	10
TDC (24 ch)	1	5
FADC (8 ch)	3	15
Crate CAEN	1	5
HV supply	1	10
	Totale	75

Richieste per il 2010

- Consumo 2 KEuro
- PMmultianode in prestito da Kloe

Totale 32 KEuro

Pb-Scint

Componente	quantità	costo (KEuro)
Pb-Scint	Kloe mod	ulo zero
PMmultianode	12	30
ADC (24 ch)	1	5
TDC (24 ch)	1	5
Crate CAEN	1	5
HV supply	1	10
	Totale	55

Richieste per il 2010

٩	Taglio e fresatura	2 KEuro
٩	Sviluppo elettronica	2 KEuro
۹	Consumo	1 KEuro
۹	PMmultianode in prestito	da Kloe
	Totale	5 KEuro

32

CSN1 Torino 🬆 19 maggio, 2010

BESIII

Pro/contro

	LYSO	Pb-Scint	
Time decay	slow	fast	
Rad. hardness	ok	limit	
ΔM_{had} (MeV)	150	350	
Feasibility	easy	Kloe modulo zero	
Costs (KEuro)	74	55 (if Kloe modulo is working)	

Milestones

LYSO Option

- Agosto 2010: consegna cristalli
- Settembre 2010: assemblaggio
- Ottobre 2010 ?: test rate e PM (Kloe2)
- Sincembre 2010: definizione elettronica
- Gennaio-Febbraio 2011: consegna PM Hamamatzu
- Febbraio 2011: consegna elettronica CAEN
- Marzo-Giugno 2011: test
- Agosto 2011: installazione a BESIII

Pb-Scint Option

- Luglio 2010: taglio modulo zero
- Giugno-Settembre 2010: assemblaggio
- ≤ Dicembre 2010: definizione elettronica e test BTF per Pb-Scint
- Gennaio-Febbraio 2011: consegna PM Hamamatzu
- Febbraio 2011: consegna elettronica CAEN
- Marzo-Giugno 2011: test
- Agosto 2011: installazione a BESIII