Study of a zero degree radiative photons tagger for ISR events in BESIII

May 13, 2010

BESIII and **ZDD**

- Two 3×2 matrices of $1.5 \times 1.5 \times 16$ cm³ of LYSO bars
- Total volume 864 cm³
- Readout with 24 APDs
- Possible Luminosity-monitor "Slot" detector in the last 7 cm

Pb-Scintillator design

Physical properties of materials

Material	LYSO	Pb-Scint
Density (g/cm ³)	7.4	5.3
Radiation Length (cm)	1.1	1.6
Molière Radius (cm)	2.0	2.9
Decay Constant (ns)	40-44	2.4
Peak Emission (nm)	428	460
Radiation Hardness (rad)	$\sim 10^{8}$	$\sim 10^{6}$

LYSO GEANT4 simulation₁

Deposited energy/ E_{γ}

1.0 - 1.4

0.2 - 0.4

3.6%

4.9%

 $\sigma_E = \frac{FWHM}{2.35}$

df

dE

 η $\sqrt{2\pi}\sigma_F\sigma_0$

 $\sigma_0 = \frac{2}{2.35} \ln \left[\eta \frac{2.35}{2} + \sqrt{1 + \left(\eta \frac{2.35}{2} \right)^2} \right]$

LYSO GEANT4 simulation₂

Referees phone meeting S May 13, 2010

Energy resolution, the ISR case

Referees phone meeting S May 13, 2010

8

Bremsstrahlung simulation

$E_{\text{beam}} = 1.89 \text{ GeV}$
$E_{\gamma}^{\min}=$ 50 MeV
$\sigma_{Bremss.}(4\pi)=$ 353 mb
$\sigma_{Bremss.}(ZDD) = 10\;mb$
${\cal L}=8 imes 10^{32}~{ m cm^{-2}~s^{-1}}$

- ISR in ZDD 13.7% of total solid angle
- Bremsstrahlung in ZDD 2.8% of total solid angle
- Bremsstrahlung rate in a single ZDD element (upper or lower):

1 MHz at $\mathcal{L} = 3 \times 10^{32}$ cm⁻² s⁻¹ 2 MHz at $\mathcal{L} = 8 \times 10^{32}$ cm⁻² s⁻¹

Bremsstrahlung rate

The $n\overline{n}\gamma_{\mathsf{IS}}$ physics case

The $n\overline{n}\gamma_{\mathsf{IS}}$ physics case

The $n\overline{n}\gamma_{IS}$ physics case: kinematic fit

Referees phone meeting S May 13, 2010

The $n\overline{n}\gamma_{IS}$ physics case: kinematic fit

The $n\overline{n}\pi^0$ background

• $e^+e^- \rightarrow n\overline{n}\pi^0$ is one of the main backgrounds

• Assuming
$$\sigma(e^+e^- \rightarrow n\overline{n}\pi^0) \simeq \sigma(e^+e^- \rightarrow p\overline{p}\pi^0)$$
:

$$\frac{\mathsf{Ev}(n\overline{n}\pi^{0})}{\mathsf{Ev}(n\overline{n}\gamma)} \left[M_{\Upsilon(4S)} \right] \simeq R_{\mathsf{BABAR}} = \frac{\mathsf{Ev}(p\overline{p}\pi^{0})}{\mathsf{Ev}(p\overline{p}\gamma)} \left[M_{\Upsilon(4S)} \right] = 0.06$$

In BESIII, directly at the Ψ(3770) mass:

$$R_{BESIII} = 0.06 \times \underbrace{\left(\frac{0.012}{3 \times 10^{-6}}\right)}_{p\overline{p}\pi^{0} \text{ cross section ratio}} \times \underbrace{\left(\frac{1}{10.7}\right)}_{\text{Lum. ratio}} = 22.4$$

$$\gamma_{\text{IS}} \rightarrow \text{ZDD}$$

$$\underbrace{\text{ZDD solid angle}}_{\text{BESIII solid angle}} \implies \underbrace{\text{Ev}(n\overline{n}\pi^{0}, \pi^{0} \rightarrow 0^{o})}_{\text{Ev}(n\overline{n}\gamma, \gamma \rightarrow 0^{o})} = 0.0008$$

The $n\overline{n}\pi^0\gamma_{\rm IS}$ background

<u> π^{0} detection in BESIII</u>: at least one of the π^{0} photons with E_{γ} >50 MeV in BESIII not in a 200 mrad cone around \overline{n} direction

- $\frac{\pi^{0} \text{ detection in BESIII}}{\text{not in a 200 mrad cone around } \overline{n} \text{ direction}}$
- Kinematical fit:

 $\chi^2 \leq 10$

- π^{0} detection in BESIII: at least one of the π^{0} photons with E_{γ} >50 MeV in BESIII not in a 200 mrad cone around \overline{n} direction
- Kinematical fit:

 $\chi^2 \leq 10$

- $\frac{\pi^{0} \text{ detection in BESIII}}{\pi^{0}}$ at least one of the π⁰ photons with E_{γ} >50 MeV in BESIII not in a 200 mrad cone around \overline{n} direction
- Kinematical fit:

 $\chi^2 \leq 10$

Energy resolution in $\overline{n}\gamma_{IS}$ missing mass

16

Events are generated with fixed value of $M_{had} = E_{cm} \sqrt{1 - 2E_{\gamma_{IS}}/E_{cm}}$

The $\overline{n}\gamma_{\rm IS}$ missing mass is obtained only from experimental data

Referees phone meeting May 13, 2010

Energy resolution in *M*_{had} slices

17

Events are generated with fixed value of $M_{had} = E_{cm} \sqrt{1 - 2E_{\gamma_{IS}}/E_{cm}}$

M_{had} is reconstructed using the kinematic fit procedure

Referees phone meeting S May 13, 2010

Energy resolutions

Two-gaussian fit: σ =

half width of the area, symmetric w.r.t. the center of mass of the distributions, which contains the 68% of events

Referees phone meeting S May 13, 2010

Expected events

- One year of data taking: $T = 1.5 \times 10^7 \text{ s}$
- Average luminosity: $\overline{\mathcal{L}} = 1.5 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

 $\epsilon = 0.5$

- Detection efficiency:
- Center of mass energy: E_{cm} = 3.77 GeV

Radiation hardness

Costing and 2010 requests

Material	quantity	Brand	Cost (KEuro)
IVSO crystals	863 cm ³ + 4 spare bars	SICCAS	26
LI SO CI YSIAIS		St. Gobain	52
APD	28		28
TDC	1 + 1 spare		10
FADC (8 ch)	3 + 1 spare		20
Total (SICCAS)		85	
	Total	(St. Gobain)	110

2010 requests

۲	LYSO crystals (SICCAS whole quantity, St. Gobain half)30 KEuro
۲	2 APDs
۲	Consumable materials 2 KEuro
	Total

