

STATUS AND ACTIVITIES

M.Bertani for the LNF BESIII group:

M.Anelli (tecn.),R. Baldini Ferroli (ass) M. Bertani, A.Calcaterra, J.Dong (ihep), G.Felici, G.Morello, S.Pacetti (Perugia), P.Patteri, E. Tskhadadze (Dubna,FAI fellowship) A.Zallo (guest)

and in collaboration with:

LNF SPAS: S. Cerioni, LNF SEA: M. Gatta, LNF (div. acc.): M. Paris, F. Putino INFN-ROMA1 A. Pelosi(tec.), M.Capodiferro(tec.) BESIII TO&FE&PG groups

OUTLOOK

- > BESIII @ BEPCII
- PHYSICS ANALYSIS AND PROPOSALS BY ITALIAN TEAM
- CYLINDRIC GEM INNER TRACKER:
 - THE PROJECT & THE TEAM
 - STATUS OF CONSTRUCTION
 - TEST BEAM AT CERN
 - THE PLAN
- ZDD STATUS
- SUMMARY

M. Bertani

BESIII/BEPCII current status

BEMS

Linac

M. Bertani

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE

BESIII experiment at the τ-charm factory
 BEPC-II, Beijing e+e- collider @ IHEP
 c.m. energy range: 2 GeV- 4.6 GeV.

44

BESIII实验是以高能所为基地的大型国际合作实验 BESIII 国际合作组

THE INFN BESIII GROUP

BESIII DATASET FROM 2009-TODAY

2.9 fb⁻¹ / 20 fb⁻¹

SCIENTIFIC COMMITTEE

+ 104 energy points between 3.85 and 4.59 GeV (XYZ)
+ 20 energy points between 2.0 and 3.1 GeV (just finished)
for RQD and hyp form factors/xsections at @ threshold
+ Y(2175) ongoing

Direct production of I^{--} states studied with world's largest scan dataset

the world's largest scan dataset of J/ψ ψ(2S) ψ(3770) XYZ states R-QCD studies will run at least 8 more years !

PHYSICS HIGHLIGHTS

nature International weekly journal of science

Archive Volume 498 Issue 7454 News Article

Home News & Comment Research Careers & Jobs Current Issue Archive Audio & Video For Authors

NATURE | NEWS

عربي

Quark guartet opens fresh vista on matter

First particle containing four quarks is confirmed.

Devin Powell

18 June 2013

원 PDF Rights & Permissions

The BESIII detector in China is one of two experiments to detect four-quark particles.

Scientists discover first tetraquark particle 🗩 😋 Share CERN COURIER

Apr 26, 2013

< 🛛 🖨

BESIII observes new mystery particle

In a striking and unexpected observation from new studies aimed at an understanding of the anomalous Y(4260) particle, the international team that operates the Beijing RSS Facebook Twitter

BESIII spectrometer

Physics analysis and proposals

PHYSICS ANALYSES AND PROPOSALS FROM LNF-TO-FE TEAM

Br (J/ψ → nnbar, ppbar) published 2012
 Br (ψ' → nnbar, ppbar) advanced draft stage
 J/ψ c.m. scan (16 points) for e.m. and strong decay amplitude phase measurement

• $e^+e^+ \rightarrow J/\psi \rightarrow \mu^+\mu^-$, $\pi^+\pi^-$, $\pi^+\pi^-\pi^0$, $\pi^+\pi^-\pi^+\pi^-$, $p\overline{p}$, $K^+\overline{K}^-$, $\Lambda\overline{\Lambda}$, $\Sigma\Sigma$, $K^0{}_S\overline{K}^0{}_L$ advanced draft stage / internal referee review first measurement of this kind

 \succ proposal: ψ' scan for e.m. and strong decay amplitude measurement *approved*

Proposal: baryons and hyperons cross sections at threshold, data partly already taken in this run

>measurement of Collins asymmetry in inclusive production of pion pairs advanced draft stage

M. Bertani

J/ ψ Strong and Electromagnetic Decay Amplitudes

J/ ψ Strong and Electromagnetic Decay Amplitudes

- If both A_{3q} and $A_{\gamma are}$ real, they must interfere ($\Phi_p \sim 0^{\circ}/180^{\circ}$)
- So far, experimentally (model dependent results) $\Phi_p \sim 90^\circ \rightarrow \text{Imaginary strong}$

amplitudes hard to explain!

$$\frac{Br(J/\psi \to p\bar{p})}{Br(J/\psi \to n\bar{n})} = \frac{(2.112 \pm 0.004 \pm 0.031) \times 10^{-3}}{(2.07 \pm 0.01 \pm 0.17) \times 10^{-3}} \sim 1 \to \phi \sim 90^{\circ}.$$
PHYSICAL REVIEW D 86, 032014 (2012), BES-III result No interference!

114

•Model independent test: look for interference pattern between the resonant

amplitude and the non-resonant continuum through a c.m. energy scan around and at

J/ ψ Strong and Electromagnetic Decay Amplitudes

Investigated Processes at BESIII (LNF-PG, TO, FE, IHEP)

Exclusive scenario: could see interference effects

M. Bertani

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE Data taken at 16 points below, at and above J/ψ peak, after Italian team proposal to BESIII Collaboration

J/ ψ Strong and Electromagnetic Decay Amplitudes preliminary results

COMMITTEE

16

OTHER VECTOR CHARMONIUM PHASES ?

> ψ '(3686) controversial: BESIII measurement of ψ '→pp̄, nn̄ → φ ~ 50° from ψ '→VP decays → φ ~ 180° from ψ '→PP decays → φ ~ 90° > ψ ''(3770): Present data suggests: φ ~ - 90°

- If the relative phase between vector charmonium E.M. and strong amplitude is different from 0°, something important is lacking in the present charmonium description:
- > A model of quarkonium OZI breaking decay developed to justify the anomalous phase.
 - kkbar anomalalous phase related to G-parity violation ?

M. Bertani

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE

Proposed by Italian group a data taking scan below, at and above the ψ ' peak to directly measure the phase. Approved by the Collaboration to be taken in 2016 run

Baryon-Antibarion cross sections

UNEXPECTED BEHAVIOUR OF BARYON-ANTIBARYON AT THRESHOLD?

- First measurement of Λ Λ at threshold, BESIII result preliminary Italian group proposal
 - We requested more data for $\Lambda_c\Lambda_c$ at W=4575MeV at threshold to improve Ge/Gm error

Neutral baryons: hints of non-zero cross section at threshold |G|=1

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE Charged baryons: hints of non-isotropic cross section at threshold \rightarrow |Ge/Gm| # I

19

Unexpected D-wave contribution at threshold?

FIG. 6. Efficiency corrected distributions of $\cos \theta_p$ and fit results for data at c.m. energies (a) 2232.4, (b) 2400.0 MeV and (c) a combined sample with c.m. energy at 3050.0, 3060.0 and 3080.0 MeV. The dots with error bars represent data. The solid line (black) represents the overall fit result. The dashed line (in blue) shows the contribution of the magnetic FF and the dot-dashed line (in red) of the electric FF.

20

DIS **2015** - XXIII International workshop on Deep-Inelastic Scattering and Related Subjects

Measurement of Collins asymmetry in inclusive production of pion pairs at BESIII

Non zero A^{UL} and A^{UC} asymmetries

- Preliminary results: statistical uncertainties only
- Asymmetry measured in the MC sample consistent with zero in each bin of z: detector effects cancel with the double ratio

Take advantage of the experience gained on the BaBar experiment to begin a new fruitful collaboration between Italian and Chinese groups.

Preliminary result has been presented to the Spin2014 conference (in Beijing) and the final paper is expected to be submitted in 2015

SCIENTIFIC COMMITTEE

THE CGEM INNER TRACKER STATUS

The BESIII Cylindrical GEM-IT:

- innovations and peculiarities
- construction of the cylindrical layer
- Team , Project & Schedule
- planar prototype:
 - test setup @ LNF
 - CERN test beam

M. Bertani

THE MULTILAYER DRIFT CHAMBER INNER TRACKER

The increases of the luminosity is speeding up the aging the the inner tracker (IT).

The gain of the innermost layers is decreasing of about 4% per year of data taking.

- MDC performs momentum and dE/dx measurement for charged particle identification.
- Spatial resolution is 130 μ m in r- ϕ plane) and 2 mm in the z-coordinate.
- Inner and Outer MDC are two separate chambers sharing the same gas volume.

M. Bertani

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE BESIII will run at least up to 2024→ a replacement is needed

THE CGEM-IT

Three layers of CGEM for BESIII

RequirementsRate capability: ~10 KHz/cm²Spatial resolution: σ_{xy} =~100µm : σ_{z} =~1mmMomentum resolution (INNER+MDC): σ_{pt}/P_t =~0.5% @1GeVEfficiency = ~98%Material budget ≤ 1.5% all layersCoverage: 93% 4 π

- Three active layers
- Active area
 - LI length 532 mm
 - L2 length: 690 mm
 - L3 length: 847 mm
- Inner radius: 78 mm
- Outer radius: 178 mm

M. Bertani

BESIII IT DESIGN VS KLOE IT DESIGN: INNOVATIONS

- rohacell (structure instead of honeycomb+carbon fiber) used to give mechanical rigidity
- anode design: XV readout with jagged-strip layout to decrease parasitic capacitance X 570μm strips, V 170μm stereo (31°-33°-47°) strips, 650μm pitch wide
- analog readout to achieve the required spatial resolution with a limited number of channels (charge centroid)

M. Bertani

FRONT END ELECTRONICS

GOALS

- Spatial Resolution $\leq 100 \, \mu \, m$
- Time Resolution ≈ 1 ns
- Dead time (shaping + analog-to-digital conversion) $\leq I \mu s$ to limit pile-up probability at a few %

ANALOG READOUT WILL BE USED TO MEASURE STRIP CHARGE

- Charge centroid measurements \rightarrow improve spatial resolution (with respect to the \approx pitch/ $\sqrt{12}$ of the digital ones).
- Two thresholds: on single strip and on total charge ightarrow better S/N
- Moderate strips pitch (650 μ m) \rightarrow reduced number of channels (\approx 10 kchs)
- 6-8 bits of fast digitization for each channel required \rightarrow new ASIC development

M. Bertani

Preamplifier boards located on the detector preserve S/N ratio Data Readout Boards and Concentrator Boards as close as possible to the detector

PREAMPLIFIER BOARDS (TO)

DESIGN INFERRED FROM TOFPET ASIC (development for medical applications – TO)

- Time and Charge measurements by TDCs
- Time over Threshold (ToT) charge measurement
- Double threshold discrimination
- Time resolution \leq I ns
- Energy resolution \leq 0.5 fC
- Technology UMC 110 nm (CGEM)
- Two ASICs per preamplifier board
- ≈ 80 boards

M. Bertani

ASIC (from TOFPET development)

64 channels

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE

channels 0.5 – 60 fC Input Charge $C_{IN MAX} \approx 100 \text{ pF}$

pprox 60 kHz average input rate

DATA READOUT (FE-LNF) & CONCENTRATOR (UPPSALA) BOARDS

Readout Boards must match the ASICs data driven architecture with BES DAQ based on LI trigger and 6.4 (nominal) latency time

HV DISTRIBUTION (LNF)

HV DISTRIBUTION SYSTEM

6 Distribution Boxes (2 boxes x layer)

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE 2, 4, 6 Macro-Sectors per side 20, 40, 60 micro-sectors per side

TOWARD THE CONSTRUCTION OF THE FIRST CYLINDRICAL LAYER

M. Bertani

CGEM Construction Tools

consttruction and assembling procedures inherited by KLOE2 experience

- Assembling of the cylinders is performed vertically → A dedicated machine has been designed and realized for KLOE2 by INFN-RM1 technical staff now beeing modify to host BESIII cylinders by same technical staff, thanks to RM1-INFN workshop.
- Axial alignment has a precision of 0.1mm/1.5m.
- The structure can rotate by 180° around its central horizontal axis one into the other.

To obtain cylindrical electrodes the foils are wrapped around molds, one mold for each of the 5 electrodes.

Cathode construction (FE)

I 2.5 micron kapton foil around the aluminum mold; that is the most critical part.

• the Rohacell plane is glued under vacuum on the kapton.

• the Rohacell plane is machined with a high precision milling machine.

GEM foils arrived from CERN

GEM testing and planar gluing (LNF)

GEM production HV quality test. After visual inspection , HV test:

- <1 nA @ 600 V
- <2 discharges/30mins

Cylindrical GEM assembly (LNF)

- GEM cylindrical assembly in the INFN-LNF clean room
- The three CGEM cylinder for the first layer are ready on their molds in LNF.
- Cathode is ready in Ferrara
- Plan to move to the vertical assembly this summer.

Cylindrical GEM assembly (LNF)

- GEM cylindrical assembly in the INFN-LNF clean room
- The three CGEM cylinder for the first layer are ready on they molds in LNF.
- Cathode is ready in Ferrara
- Plan to move to the vertical assembly next summer.

CGEM: The Team, Project status and schedule
The CGEM team

The INFN group is leading the development of the CGEM-IT

- Together with INFN (LNF-PG, Ferrara, and Turin) and IHEP,
- Mainz and Uppsala are officially part of the project.
- Sharing of responsibilities:
 - INFN: design and construction of the detector and electronics
 - IHEP: gas system, slow control and all the software developments needed to readout and integrate the detector into the DAQ
 - Mainz: high voltage system and participation to the ASIC foundry cost.
 - Uppsala: data concentrator

June 2014: Conceptual Design Report

Introduction 1.

- The present BESIII Inner Iracker 1.
- Luminosity Issues 2.
 - 1. Present and expected backgrounds
- 3. Inner Tracker Upgrade Requirements
- 2. Detector design
 - Operating principle of a triple Cylindrical GEM detector
 - 1. The KLOF2 Inner Tracker: know-how and first results
 - **BESIII CGEM** innovations
 - 1. Rohacell
 - 2. Anode design
 - 3. Analog vs. digital, expectations and measurements
- The BESIII CGEM-IT 3.

- CGEM-IT vs DC-IT 1.
- Mechanical Design 2.
- Tooling and Construction З.
- Simulation of Cylindrical GEM Inner Track 4.
 - Parametric Simulations (Liang) 1.
 - CGEM-IT full Offline Reconstruction
 - 1. Pattern Recognition
 - Tracking 2.
 - 3. Acceptance, Resolutions and Reconstruction Efficiencies
 - Monte Carlo simulation results З.
 - 1. Physics Benchmark

- Front End Electronics 5.
 - Requirements 5.
 - 5. Power Consumption
 - System Block Description 6.
 - **On-Detector Electronics** 7
 - 5. ASIC
 - **Off-Detector Electronics** 8.
- DAQ and Trigger 6.
 - Requirements 5.
 - Dead time and bandwidth 6.
 - Possible second level trigger future upgrades 7.
 - 8. Storage
- Integration of the CGEM-IT with the Spectrometer 7.
 - Mechanical design 5.

- 5. Interfacing with beam pipe
- 6. Interfacing with Outer DC
- Power Dissipation and Cooling 6.
- Gas Systems 7.
- **HV** Systems 8.

- 9. Slow Controls
- Money, manpower, schedule, task subdivision..... 8.

Approved by BESIII Executive Board on July 2014

June 20

1. Introduction

- The present BESIII Inner I 1.
- Luminosity Issues 2.
 - 1. Present and expected
- 3. Inner Tracker Upgrade Re

2. Detector design

- Operating principle of a tri 1.
 - 1. The KLOF2 Inner Trac
- **BESIII CGEM innovations** 2
 - 1. Rohacell
 - 2. Anode design
 - 3. Analog vs. digital, exp

The BESIII CGEM-IT 3.

- CGEM-IT vs DC-IT 1.
- Mechanical Design 2.
- Tooling and Construction З.

Simulation of Cylindrical GE 4.

- Parametric Simulations (L 1.
- CGEM-IT full Offline Reco
 - 1. Pattern Recognition
 - Tracking 2.
 - 3. Acceptance, Resoluti
- Monte Carlo simulation re З.
 - 1. Physics Benchmark

Conceptual Design Report

BESIII Cylindrical GEM Inner Tracker

BESIII Collaboration

July 3rd, 2014

Ver. 1.0.1

1 bandwidth d level trigger future upgrades

CGEM-IT with the Spectrometer

sign

ig with beam pipe ig with Outer DC tion and Cooling

; schedule, task subdivision.....

Approved by BESIII Executive Board on July 2014

External fundings

INFN-MAE-IHEP 2013-2015 CGEM PROJECT

- Design, construction and test of a CGEM prototype with analog readout, to be used as the first layer of a new CGEM IT for BESIII,
- Recognized as a Great Relevance Project within the Executive Program for Scientific and Technological Cooperation between Italy and P.R.C. for 2013-2015.

EUROPEAN COMMISSION

total budget ≈ 360.0K€

Horizon 2020 MSCA RISE (Research and Innovative Staff Exchange) 2014

Proposal Evaluation Form

	1
\bigcirc	
European Commission	

Horizon 2020 - Research and Innovation Framework Programme

Evaluation Summary Report

Call: Funding scheme: Proposal number: Proposal acronym: Duration (months): Proposal title: H2020-MSCA-RISE-2014 Marie Skłodowska-Curie Research and Innovation Staff Exchange (RISE) 645664 BESIIICGEM 48

An innovative Cylindrical Gas Electron Multiplier Inner Tracker for the BESIII Spectrometer

Criterion 1 - Excellence (weight 50%)

Score: 4.40 (Threshold: 0.00/5.00 , Weight: 50.00%)

Project Schedule

PLANAR DETECTOR TEST PROTOTYPE

M. Bertani

THE PLANAR PROTOTYPE & THE TEST BEAM AREA @ LNF

Cosmic telescope setup @ LNF :

New BESIII test chamber $(10 \times 10 \text{ cm}^2)$ compass-like.

4 KLOE-type planar chambers (Thanks to KLOE2 people) X-Y ortogonal views

M. Bertani		The new BESIII-type planar (10x10 cm) test chamber: X- and Y-strip planes
BES	SIII STATUS, 49TH LNF CIENTIEIC	128 strips/plane read out by 2 APV25 chips, yielding 128 charge values, for 27 time
C	OMMITTEE	samples (25 ns apart) 443

CERN SPS TEST BEAM

Planar prototype tested at CERN SPS beam last December to test a planar

prototype inside a magnetic field.

The BESIII prototype

Tracking

M. Bertani

Tracking

- validate analogue readout
- validate Garfield simulation
- test different gas and geometry configurations
- test 3mm and 5mm gap

CERN SPS TEST BEAM

Planar prototype tested at CERN SPS beam last December to test a planar

prototype inside a magnetic field.

The BESIII prototype

Forward Tracking

Backward Tracking

M. Bertani

- validate analogue readout
- validate Garfield simulation
- test different gas and geometry configurations
- test 3mm and 5mm gap

TEST BEAM PRELIMINARY RESULTS B=0

gas mixture: Ar/Isobutane (90/10)

With Ar/Isob (90/10) gas mixture, 650 µm strip pitch, 3mm gap, B=0 :

- Efficiency plateau starts @ gain≈6000.
- Efficiency for 2 dimensional clusters ~97%

σ≈ 90 μm

TEST BEAM PRELIMINARY RESULTS B=0

gas mixture: Ar/Isobutane (90/10)

Effect of the magnetic field on the electron avalanche

• The effect of the magnetic filed to the electron avalanche has been studied with a Garfield simulation.

- The Lorentz force displaces the electron avalanche
- In addition the B field produces a broadening of the charge distribution at the anode.

PRELIMINARY RESULTS WITH

Exploring the GEM technology potentialities: µTPC readout

- The time information can be used to improve the spatial resolution with B field.
- Time information can be extracted from the sampling of the APV signal.

Fit to the charge samples to extract the drift time

μTPC readout feasibility study

Hit Time distribution for all clusters with 1 T magnetic field

- The electron drift velocity can be extracted by the hit time distribution and it's consistent with simulations.
- The track can be reconstructed from the drift velocity measurement.

one track reconstruction in a 5 mm gap

ZDD STATUS

M. Bertani

ZDD STATUS

-350

-400

-300

M. Bertani

-500

-450

-550

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE

-350

-400

-300

-š50

-500

-450

 Pb/Sci.Fi Array a` la KLOE scintillating material 60% of total (in volume)

- two modules (up and down the beam) dimensions:14×4×6cm³
- signal extracted and channeled to PM through bundles of clear optical fibers (2m long)

Is perfectly working as luminosity monitor !

53

SUMMARY AND CONCLUSIONS

- BEPCII is running smoothly from 2.1 to 4.6 GeV since 2009
- Many new unexpected results both at high and low energies
- New CGEM-IT beeing developed
- Successfull physical proposals by Italian group
- Joined IHEP-INFN Annual Cooperative Meeting on May 15
 - Congratulations by Y.Wang to the Italian team for the valuable contributions to BESIII
 - Prof. Maiani visiting IHEP now, congratulates for XYZ results,

giving suggestions where to look for new states !

M. Bertani

An IHEP-INFN Fellowship Program

Rinaldo Baldini, Lijun Guo, Marco Maggiora

A flexible Fellowship Program

IHEP-INFN Fellowship Program:

- flexible to cope dynamically with existing research challenge
- flexible to catch new opportunities
- · jointly agreed amendments may occour at any time

every year IHEP and INFN agree on:

- which Collaboration(s) may have access to the Fellowship P
- the composition of the Selection Committee(s)
- the exact number of the positions available, the baseline beir two annuities per year per Collaboration

strengthening I2JL with a Common Fund:

- set within I2JL to support the program
- funded by IHEP and INFN with 400kCNY each, 800kCNY t per year, per Collaboration

015/05/15

2015 INFN-IHEP Bilateral Meeting

Baseline

• it's a joint program:

• shared financial effort: 50%-50%!

two annuities (24 months) available each year per Collaboration:

- 1y + 1y positions available each year, or
- 1y position available each year and 2y position available every 2y
- each position can be renewed up to a total of 3y

characteristics:

- reserved for Italian Post Doctoral Researchers (PhD is required)
- · positions provided by IHEP
- funded by the Common Fund
- P.R.C. laws and regulations apply
- gross salary: <u>400kCNY/y</u>, ~ 57k€/y
- net salary (current P.R.C. taxation): ~ 330 kCNY/y (~ 47k€/y, ~ 3.9k€/m)
- housing assistance from IHEP

2015/05/15

2015 INFN-IHEP Bilateral Meeting

M. Bertani

THE LNF GROUP

LNF staff personell at today: 4 researchers/technolgist (*KLOE2*) (3:1) 1 senior associates (at IHEP now) 1 senior guest 1- 1year contract *in 1 months total of 4 FTE*

Technical staff at LNF: 1 (0.3 FTE) LNF-SPAS (*KLOE2*) $\rightarrow \bigcirc$ 2 (0.1 FTE) RM1 from RM1-*KLOE2* $\rightarrow \bigcirc$ 1 IHEP (*KLOE2*) leaving in October $\rightarrow \bigcirc$ 1 DUBNA (*KLOE2*) leaving in August $\rightarrow \bigcirc$ 1-2 (0.1 FTE) from TO

M. Bertani

SOME MORE INFORMATION

M. Bertani

THE BESIII ENERGY REGION 2 - 4.6 GEV

- Rich of resonances: charmonia and charmed mesons
- Threshold characteristics (pairs of τ, D, D_s, ...)
- Transition between smooth and resonances, perturbative and non-perturbative QCD
- Energy location of the new hadrons: glueballs, hybrids, multi-quark states

BESIII data taking status & plan

	Previous data	BESIII present & future	Goal
J/ψ	BESII 58M	1.2 B 20* BESII	10 B
Ψ'	CLEO: 28 M	0.5 B 20* CLEOc	3B
ψ"	CLEO: 0.8/fb	2.9/fb 3.5*CLEOc	20 /fb
Above open charm threshold	CLEO: 0.6/fb @ψ(4160)	0.5/fb@ψ(4040) 2.3/fb@~4260, 0.5/fb@4360 0.5/fb@4600, 1/fb@4420	5-10 /fb
R scan & Tau	BESII	3.8-4.6 GeV at 105 energy points 2.0-3.1 GeV at 20 energy points	
Y(2175)		100 pb ⁻¹ (taking data now)	
ψ(4170)		3 fb ⁻¹ (next run)	

Peak luminosity achieved 8.5 ×10³² cm⁻² s⁻¹

Interference in $e^+e^- \rightarrow J/\psi \rightarrow \mu^+\mu^-$

Interference pattern between J/ ψ decay and the non-resonant decay amplitudes first observed at SLAC [PRL 33,1406] in 1975. Confirmed by BESII and KEDR

49TH LNF SCIENTIFIC COMMITTEE

THE KLOE-2 ANODE DESIGN

Readout plane is realized at CERN TE-MPE-EM It is a kapton/copper multilayer flexible circuit Provides 2-dimensional readout with XV strips on the same plane

•X are realized as longitudinal strips
•V are realized by connection of pad through conductive holes and a common backplane
•Pitch is 650 μm for both

X pitch 650 μ m \rightarrow X res 190 μ m

V pitch 650 μ m \rightarrow Y res 350 μ m

25/10/2012 • 17

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE with digital readout and ~0.5 T magnetic field

Presented by D. Domenici @ LNF CGEM workshop

An alternative solution: uTPC

- For the uTPC mode operation a good time resolution on single hit O(<10ns) is crucial
- APV samples signal at 25ns
- Time extracted by fitting the binned signal shape with a FD function $\rightarrow \sigma_t = 11-12$ ns
- Take the first hit from TI ant T2 and compute Dt = tI-t2
- Intrinsically MM can do much better

25

ATLAS test

MM in Magnetic field

ZDD STATUS

- designed in Frascati in 2010 to detect ISR photons at low angle and measure luminosity
- In 2011:built, tested at LNF and installed at BEPCII —Not ready for integration in BESIII DAQ in 2011-2012
- •Start of real BESIII data taking in 2012-2013
 - -DAQ errors! Data compression buggy, and also too slow
- •An upgrade was designed, built and installed in 2013
 - -New preamps in VME instead of NIM, "segmentation" strips
 - -DAQ problems persisted also in 2013-2014
 - -Data taking window too large for processor speed wrt L1* rate
 - -Latest CAEN firmware not buggy but still too slow
- •ZDD signal finally identified in spring-summer 2014
 - Is in the data stream of BESIII
 - Data on tape
- Since 2012 is working as Luminomiter of BEPCII

M. Bertani

ZDD SIGNAL TIMING

ZDD sensitive to most of BEBCII beam crossing, high background!

If we plot "everything" there is no ZDD signal

Plot "selected data" in BESIII: $e^+e^-\gamma$ events

- 2 charged tracks, total charge 0
- Less than 10 neutrals
- $E(e^+) > 0.6 \text{ GeV/c}^2 \text{ and } E(e^-) > 0.6 \text{ GeV/c}^2$
- A successful vertex fit
- A "strong" missing photon: E_{miss}>0.4 GeV
- A low polar emission angle: |cos(θ_γ)| >
 0.98

ZDD SIGNAL TIMING

ZDD sensitive to most of BEBCII beam crossing, high background!

If we plot "everything" there is no ZDD signal

Plot "selected data" in BESIII: $e^+e^-\gamma$ events

 two clear correlated peaks on top and bottom modules

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE

67

	EUROPEAN COMMISSION		Evaluation			
European Commission	Horizon 2020 - Research and Innovation	Summary Report				
Call:	H2020-MSCA-RISE-2014					
Funding scheme:	f Exchange (RISE	Ξ)				
Proposal number:						
Proposal acronym:						
Proposal title:	An innovative Cylindrical Gas Elect	ron Multiplier Inner T	racker for the BF	SIII Spectrom	neter	
Activity:	PHY					
N.	Proposer name	Country	Total Cost	% ■	Grant equested	%
1 ISTITUTO NAZI	1 ISTITUTO NAZIONALE DI FISICA NUCLEARE		657,000	37.73%	657,000	43.84%
2 JOHANNES GU	TENBERG UNIVERSITAET MAINZ	DE	070,500	20.50%	070,500	44.74%
3 UPPSALA UNIV	ERSITET	SE	1/1,000	9.82%	171,000	11.41%
		CN	243,000	13.95%	0	0.00%
Total:			1,741,500		1,498,500	
	Evaluation	Summary Rep	port			

Evaluation Result

						Estimated budget support (whole duration of the project)				
Participant Number Organisation Short N	Organisation Short Name	Country	Academic	ademic Number of secondments	Person-months	Staff member costs	Research, training and networking costs	Management and indirect costs	Total	Requested EU contribution/€
1	INFN	п	yea	111 🤇	146	292 000	262 800	102 200	657 000	657 000
2	JGU-Mainz	DE	yes	97	149	298 000	268 200	104 300	670 500	670 500
3	UUppsala	SE	yes	25	38	76 000	68 400	26 600	171 000	171 000
4	IHEP	CN	yes	13	54	108 000	97 200	37 800	243 000	0
Total				246	387	774 000	696 600	270 900	1 741 500	1 498 500

Participant number (as table §A.2)	Partnership Member	Legal Entity Short Name	Academic (Y/N)	Country
	Beneficiaries			
1	Marco Maggiora	INFN	Y	Π
2	Frank Maas	JGU-Mainz	Y	DE
3	Tord Johansson	UUppsala	Y	SE
	<u>Partner</u> Organisations			
4	Xiaoyan Shen	IHEP	Y	CN
		DECILI		

2014/09/29 M. Bertani

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE INFN CSN1 - BESIII

95

Package No		Training, Management, Communication, Dissemination)	person-months involved	Month	
1	CGEM design	Research, Training	16	1	24
2	CGEM construction	Research, Training	62	1	48
3	CGEM electronics	Research, Training	74	1	48
4	Data simulation and analysis	Research, Training	229	1	48
5	Data challenge	Research, Training	2	1	48
6	Outreach	Training, Dissemination	0	1	48
7	Management	Communication, Management	4	1	48

M. Bertani BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE budget is entirely built up on researcher's secondment periods in P.R.C.

1 secondment person month = 4500 \in

Formally: 4500€ =

- 2000 (researcher's salary top-up)
- 1800 (research costs)
- 700 (management costs)

However: no budget accounting is required, but only secondments accounting !

i.e. Only proofs of the secondments travels and activity shall be provided.

Budget can be used freely according to internal project rules.

M. Bertani

Financial cooperation EU - IHEP

The full construction cost for the full CGEM-IT is **about IM€**

(not including manpower, integration and installation)

COMMITTEE RECITI CTATIIC 15th INE
Observation of a charmonium like structure: $Z_c(3900)^{\pm}$

2013: 515 pb⁻¹ @ 4260 MeV

- $e^+e^- \rightarrow \pi^+\pi^- J/\psi$
- Dominant background $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$
- *J/ψ signal:* [3.08,3.12] *GeV*
- *J/ψ sideband*: [3.0,3.06] *GeV or* [3.14,3.20] *GeV*
- Structure seen: $Z_c(3900)^{\pm} \rightarrow \pi^{\pm} J/\psi$

M. Bertani

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE

⁷³ 73

BESIII: e⁺e⁻ -> π⁺π⁻J/ψ @ 4.26 GeV

PRL 110, 252001

 $Z_{c}(3900)^{\sharp}$

- Couples to 🖉 cc
- Has electric charge
- At least 4-quarks
- What is its nature?

S-wave Breit-Wigner with efficiency correction
Mass = (3899.0±3.6±4.9) MeV
Midth = (46±10±20) MeV
Fraction = (21.5±3.3±7.5)%

SCIENTIFIC COMMITTEE

74

BESIII: e⁺e⁻ -> π⁺π⁻J/ψ @ 4.26 GeV

BESIII: Z_c Results

e⁺e⁻ -> π⁻(DD̄*)⁺+c.c. @ 4.26 GeV

Above 4 GeV

- The observed charmonium-like states Y(4260), Y(4360), and Y(4660) can not interpreted as conventional charmoniums.
- New decay modes searching and the line shape measurement is useful for understanding the nature of these Y-states.
- ► Hadronic transitions (by an η or π^0) to lower charmonia like J/ψ are regarded as sensitive probes to study the properties of these Y-states.
- Nature of these Y-states: hybrids ? tetraquarks? hadro-charmonium? hadronic molecule?

M. Bertani

BESIII STATUS, 49TH LNF SCIENTIFIC COMMITTEE

Models for X Y Z mesons

see e.g. M.Cleven, F.K.Guo, C.Hanhart, Q.Wang and Q.Zhao, arXiv:1505.01771 and refs. therein

4100

BESIII Detector

CsI(TI) EMC

ETOF: 48 crys. for each

RPC MUC PC MUC BMUC: 9 layers – 72 modules EMUC: 8 layers – 64 modules

MDC

Magnet: 1 T Super conducting

BESIII Detector

[NIM A614 (2010)345]

BESIIII detector: all new !

CsI calorimeter Precision tracking Time-of-flight + dE/dx PID

The detector is hermetic for neutral and charged particle with excellent resolution, PID, and large coverage.