Correlation QDC vs. FlashADC

Runs 219, 228 "up" calorimeter

The problem

- We routinely measured cosmics and electrons with a 12-bit QDC (4096 channels) and all data make sense w.r.t. what is expected
- At BESIII we will sooner or later use an 8-bit Flash ADC; Giulietto's electronics converts integrated charge to a V-signal with a given conversion factor.
- What is this conversion factor? Will we saturate the FADC scale?

Run 219, cosmics at LNF

- "up" minicalorimeter
- Symmetric external trigger on left and right sides
- HV: "Hamamatsu" 1.4 kV points, gain \approx 1.2•10 ${ }^{6}$, Happy Box present
- Chs. 0,1,2,3 to QDC ch.s 0,1,2,3 (gate 200 ns)
- Chs. 4,5,6,7 sent to FADC, analogic sum to ch. 3 of FADC

Scanning waveforms

- First 30 ns data (15 samples) used to find the baseline on a per-event basis
- Samples 20 to 50 (40 to 100 ns) used to find the signal peak
- Plot the peak, subtracted from the baseline
- Do the same for channel 3 (analogic sum) and correlate with the sum $(0,1,2,3)$

Run 219, cosmics, QDC data

- Ch. 0 in the QDC sees 40 pC , with a sigma of 9.5, over a pedestal of $15.9 \rightarrow 24 \mathrm{pC}$. Other channels see $43,47,45 \mathrm{pC}$ after pedestal subtraction; in fact they have twice the track length of ch.0.

Run 219, FADC, all triggers

The summing amplifier

There is only a slight effect of bending, or saturation, close to the end of the scale.

The summing amplifier works fine, irrespective of resolution loss.
The FADC exits have an extra factor 2 w.r.t. the MON exits, used for the SUM

Clean up the trigger!

Run 219, FADC, trigger cleanup

Peak in channels $5,6,7$ is a factor 2 higher than in channel 4, just as expected. This is a good thing!

Summary of facts

- Ch. 3 is the SUM out of "far" NIM modules
- Ch. 4 is, by construction, identical to ch. 0 and, by trigger configuration, should see exactly the same charge as ch. 0 (in QDC and FADC)
- Fitting the FADC ch. 4 peak we see an average of 0.26 V with a sigma of 0.12 V (pedestal subtracted)
- Conversion factor is $(260 / 24 \approx 11) \mathrm{mV} / \mathrm{pC}$

Is this OK?

- In cosmics, we see 16 MeV , divided 2.29:4.57:4.57:4.57 in the 4 channels $0(4), 1(5), 2(6), 3(7)$
- FADC ch. 4 ($4 \mathrm{mV} /$ count, 256 counts) sees 300 $\mathrm{mV} / 2.29 \mathrm{MeV}$, that is $33 \mathrm{cts} / \mathrm{MeV}$: ch. 4 will saturate at 7 MeV of deposited energy. Even before, considering peak widths.
-it's really not OK! The gain is way too high

What about 450 MeV electrons?

- We see in the scintillating fibers 12% of the electron energy, that is 50 MeV
- Shower profile ratioes are, from BTF data, 0.1:0.5:0.3:0.1: 5, 25, 15, 5 MeV in chs. 4 to 7
- All channels would saturate, ch. 5 first
- This is more than an order of magnitude too much
- We must reduce gain by at least one order of magnitude, reducing HV and using the "MON" exit of the yellow NIM modules (factor 2 less than "FADC" exits).

Run 228, cosmics at LNF

- "up" minicalorimeter
- HV: "corrected" 1.4 kV points, gain $\approx 1.2 \cdot 10^{6}$, Happy Box not present
- Ch. 0,1,2,3 sent to QDC (gate 200 ns)
- Ch. 4,5,6,7 sent to FADC chs. $0,1,2,3$, analogic sum to ch. 4 of FADC

Run 228, cosmics, QDC data

Ch	Ped $(p C)$	Peak (pC)	Gain (pC)	$\sigma(p C)$	$\sigma / E(\%)$
0	16.1	(27.2 ± 0.3)	11.1	(4.2 ± 0.3)	38%
1	15.7	(36.2 ± 0.9)	20.5	(7.2 ± 1.0)	35%
2	14.1	(35.9 ± 1.0)	21.9	(6.8 ± 0.7)	31%
3	15.6	(37.6 ± 0.7)	22.0	(5.5 ± 0.8)	25%

Run 228, FADC, trigger cleanup

Peak in channels $1,2,3$ is a factor 2 higher than in channel 0 , just as expected. This is a good thing!

Run 228, FADC, trigger cleanup

Ch	Peak (mV)	$\sigma(\mathrm{mV})$	$\sigma / E(\%)$
0	(142 ± 10)	(63 ± 20)	44
1	(323 ± 23)	(109 ± 34)	38
2	(383 ± 25)	(102 ± 40)	27
3	(316 ± 57)	(162 ± 91)	51
SUM	(644 ± 30)	(136 ± 47)	21

- Unfortunately, a small sample (1 day only)
- $\sigma /$ E seems bigger in the FADC chain than in the QDC one, but need more stat
- Channel values now in range (cfr. slide 7) at least for cosmics

Summary

- The maximum gain for cosmics running is about 6.105
- This can be achieved running without Happy Box, and/or using the "MON" exit of the yellow SELF modules
- Maximum gain for BESIII running hard to predict, probably $\approx 10^{5}$ or less
- This is required also because of high rates

