Study of semileptonic B decays with the Central Barrel

Carlo Bombonati for ALICE Padova

Terzo convegno Nazionale sulla Fisica di ALICE Frascati, 12-14 Novembre 2007

Motivations

Outline of a possible analysis

Results

• Extra: *a topological approach* (by J. Faivre)

Conclusions

Important test of pQCD in a new energy domain

Theoretical uncertainty on beauty cross section of a factor ~ 2

Beauty as a probe for the medium

- Interacts through parton energy loss
- Energy loss depends on: flavour charge, mass and a medium transport coeficient

Elliptic flow for beauty:

- <u>At low-medium</u> p₊: it's a test for the initial thermalization
- <u>At high</u> p₁: it's a test for the medium density (again through energy loss)

C. Bombonati

Study of semileptonic B decays

using: Mangano, Nason, Ridolfi,

NPB373 (1992) 295

Beauty in the Central Barrel

Technicalities

- <u>Simulations</u> based on Pythia + Heavy Flavours tuned on MNR* calculations
- <u>ITS</u>: assumed perfect alignment
- <u>TPC</u>: old track reco. algo. (now it is more efficent)
- <u>TRD</u>: old pion rejection

*MNR code:

Mangano, Nason, Ridolfi, NPB373 (1992) 295.

Beauty signal

Background sources

- 1. <u>Charged Pions</u> mis-identified as electrons
- 2. <u>Photon conversions</u> $(\gamma \rightarrow e^+e^-)$ in the beam pipe and inner layers
- 3. Decays of <u>light mesons</u> and <u>Dalitz decays</u> (mostly π^0)

Selection strategy

Electron Identification (TPC+TRD)

Selection strategy

C. Bombonati

Selection strategy

In a given p_t -bin we get N "electrons": N = N_b + N_c + N_{bkg}

1. We subtract the contribution from charm: N – N_c

Charm calculated from D^o measurement

2. We subtract the contribution from background: $N_b = (N - N_c) - N_{bkg}$ Estimated from measured pions dN/dp, plus MC (including conversions)

3. We correct for acceptance/efficiency: $dN_{b}^{corr}/dy = (N_{b} / \epsilon)$

Calculated with MC techniques

4. We multiply by the inelastic pp cross section: $d\sigma_e/dy = \sigma_{pp} \cdot dN_b^{corr}/dy$

Cross section measured at LHC

Statistics (p-p)

p _t bin [GeV/c]	d₀ cut [μm]
1.0 – 1.5	400
1.5 – 2.0	400
2.0 – 2.5	300
2.5 – 3.0	200
3.0 - 4.0	150
4.0 – 5.0	150
5.0 – 7.0	100
7.0 – 9.0	100
9.0 – 12.0	100
12.0 – 16.0	50
16.0 – 20.0	50

p _t bin [GeV/c]	d₀ cut [µm]
1.0 – 1.5	200
1.5 – 2.0	200
2.0 – 2.5	200
2.5 – 3.0	200
3.0 - 4.0	200
4.0 – 5.0	200
5.0 – 7.0	200
7.0 – 9.0	200
9.0 – 12.0	200
12.0 – 16.0	200
16.0 – 20.0	200

10⁷ central (0-5%) Pb-Pb events (1 year of nominal ALICE luminosity)

Results

p-p

C. Bombonati

Beauty cross section (1)

From electrons in 2 < p_t < 20 GeV/c, B mesons in 2 < p_t^{min} < 30 GeV/c

C. Bombonati

R_{AA} (2)

Beauty electrons elliptic flow (3)

- **in-plane** (-45< $\Delta \phi$ <45 & 135< $\Delta \phi$ <225)
- **out-of-plane** ($45 < \Delta \phi < 135 \& 225 < \Delta \phi < 315$)

J. Faivre: Beauty to "many prongs"

Vertexer mechanism :

- \rightarrow Decay vertex characterized by small DCA's track-vertex...
 - ...but also by small DCA's track-track
- →So points of closest approach between daughter tracks are in a small region of the space
- \rightarrow We can bin the space and locate spikes in the number of DCA points

J. Faivre: Results

B-to-electron and "many prongs" methods are in the same playground

- Year-1 measurement (10⁹ p-p minbias events)
- Purity is 70 % (NB : background is all due to primary tracks)
- \rightarrow Try to use that working-point + estimate background contribution
- \rightarrow Try to go to higher purities (geometrical cuts, under study)
- Will have to estimate the vertexer efficiency (hard work ahead !)

Conclusions

- Beauty production at collider energies
- Test of pQCD theory (Large uncertainities for prediction at LHC)
- Probe for QGP (mass dependence of in-medium Energy Loss)
- Test for thermalization (elliptic flow)

ALICE is equipped for heavy-flavour studies

- Using single electrons is just the first/simplest approach
- Cross section for B mesons: sensitive to QCD predictions
- R_{AA} for B mesons: measure of q-hat and mass dependence of energy loss
- Elliptic flow for B electrons: possible measurement between $p_{_{1}} \sim 2.0-7.0$ GeV/c
- Promising alternative method: topological approach

Backup

C. Bombonati

Cut: $|d_0| > |d_0|^{MIN}$

Systematic error:

Statistical error:

prefers tight cut (high signal purity) dominates at low p,

prefers loose cut (small d_o MIN) dominates only at high p_t

C. Bombonati

Study of semileptonic B decays

<u>╔╪┎╞╕┰╋┰╒╬</u>┱╋

400 500 600

|d₀| MIN [μ m]

C. Bombonati

Goal: an estimate of the error on v_2 for beauty electrons

To achieve this we use:

- Our results (<u>electrons from beauty</u>) for Pb-Pb rescaled for 20-60% centrality
- Our error estimates for the charm and background subtraction
- Van Hees and Salgado predictions for beauty/charm v2 presented at the "Heavy Ion Collisions at LHC" (2007)

Assumptions:

- v2(bkg) = v2(charm)
- err[v2(charm)] = 25%
- err[v2(bkg)] = 15%

- H. van Hees, V. Greco, R. Rapp
- C. A. Salgado, N. Armesto, M. Cacciari, A. Dainese and U. A. Wiedemann