ALICE Italia Frascati, 13 Novembre 2007

Jets, and Reconstruction with FastJet

Matteo Cacciari

LPTHE - Paris 6,7 and CNRS

In collaboration with Gavin Salam and Gregory Soyez

Ciao Matteo, allora, mi dai una confermuccia per Frascati?

```
Ciao, grazie, a presto,
```

Federico

Goals

Consider **real** jet algorithms

i.e. jets that can be predicted from perturbative QCD What tools are available?

Subtract diffuse soft background from hard jets

UE/pileup/heavy ions background

How do we do it?

Jet Definition

+ parameters (usually at least the radius R)

Reminder: running a jet definition gives a well defined physical observable, which we can measure and, hopefully, calculate

Jet Algorithm requirements

A jet algorithm **must** be

✓ infrared and collinear safe

soft emission shouldn't change jets collinear splitting shouldn't change jets

✓ identically defined at parton and hadron level

so that perturbative calculations can be compared to experiments

It is **nice** if a jet algorithm is

✓ not too sensitive to hadronisation, underlying event, pile-up (because we are not very good at modeling non-perturbative stuff)

✓ realistically applicable at detector level (e.g. not too slow)

Jet Algorithms

Two main jet algorithm classes: cone algorithms and sequential clustering algorithms

<u>**Cone-type</u>** algorithms (JetClu, ILCA/MidPoint,) are mainly used at the Tevatron. They **identify energy flow into cones**. Detailed definition can be messy. Infrared/collinear safety must be carefully studied.</u>

Sequential clustering algorithms (kt, Cambridge/Aachen, Jade,...) are based on pair-wise successive recombinations. Widely used at LEP and HERA. Simple definition, safely infrared and collinear safe.

The first cone

Jets are as old as the parton model (yes, even older than QCD...):

S.D. Drell, D.J. Levy and T.M. Yan, Phys. Rev. **187**, 2159 (1969) and **D1**, 1617 (1970) N. Cabibbo, G. Parisi and M. Testa, Lett. Nuovo Cimento **4**, 35 (1970) J.D. Bjorken and S. D. Brodsky, Phys. Rev. **D1**, 1416 (1970) R.P. Feynman, Photon Hadron Interactions, p. 166 (1972)

The first rigorous definition of an **infrared and collinear safe** jet in QCD is due to Sterman and Weinberg, Phys. Rev. Lett. **39**, 1436 (1977):

To study jets, we consider the partial cross section $\sigma(E,\theta,\Omega,\varepsilon,\delta)$ for e⁺e⁻ hadron production events, in which all but a fraction $\varepsilon <<1$ of the total e⁺e⁻ energy E is emitted within some pair of oppositely directed cones of half-angle $\delta <<1$, lying within two fixed cones of solid angle Ω (with $\pi\delta^2 <<\Omega <<1$) at an angle θ to the e⁺e⁻ beam line. We expect this to be measur-

$$\sigma(\mathbf{E},\theta,\Omega,\varepsilon,\delta) = (d\sigma/d\Omega)_{0} \Omega \left[1 - (g_{\mathbf{E}}^{2}/3\pi^{2}) \left\{ 3\ln \delta + 4\ln \delta \ln 2\varepsilon + \frac{\pi^{3}}{3} - \frac{5}{2} \right\} \right]$$

A modern cone algorithm

How do I decide where to place the cones?

Try an initial location

sum 4-momenta of particles, find axis of cone

Implies a new trial location, and **iterate**

stop when axis is stable

The set overlapping cones, or split them into two

Issues:

Solution: Where do I start?

Seedless (i.e. everywhere)? Some particles above a threshold? Calorimeter towers? Very slow Collinear unsafe Expt. dependent

How do I split/merge?

Complicated procedure, risky, not necessarily physical

k_t algorithm

The definition of a sequential clustering algorithm, on the other hand, is extremely simple.

For instance, take **the longitudinally invariant k_t:**

S. Catani, Y. Dokshitzer, M. Seymour and B. Webber, Nucl. Phys. B406 (1993) 187 S.D. Ellis and D.E. Soper, Phys. Rev. D48 (1993) 3160

Calculate the distances between the particles: $d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$ Calculate the beam distances: $d_{iB} = k_{ti}^2$

Combine particles with smallest distance or, if d_{iB} is smallest, call it a jet

Find again smallest distance and repeat procedure until no particles are left

[In most naive implementation, calculating all distances is an N² operation, to be repeated N times $\Rightarrow O(N^3)$]

Tools

<u>Until two years ago:</u>

- Cone algorithms: not really safe

Typical cone algorithms (JetClu, MidPoint, etc) are not infrared safe: at some order in perturbation theory they will fail

- k_{t} algorithm: very slow for large N (~ N³)

Clustering many particles takes a very long time (~ I day CPU time for one LHC heavy ion event)

Tools

Now:

- k_t and Cam/Aachen algorithms: very fast (~ N In N) MC, G. Salam, hep-ph/0512210
- Cone safe and reasonably fast (SISCone, ~ N² In N)
 G. Salam, G. Soyez, arXiv:0704.0292
- Subtraction of background using jet areas MC, G. Salam, arXiv:0707.1378
- anti-k_t algorithm (recombination algorithm, but gives perfect cones) MC, G. Salam, G. Soyez, in preparation

FastJet: http://www.lpthe.jussieu.fr/~salam/fastjet

FastJet performance

Time taken to cluster N particles (k_r algorithm):

Almost two orders of magnitude gain at small N (related $O(N^2)$ implementation) Large-N region now reachable (O(1 sec) rather than 1 day for heavy ion collisions)

What is anti- k_{r} ?

A <u>new recombination-type algorithm</u>, using a distance measure similar to k_{t} and Cambridge/Aachen:

$$d_{ij} = \min(k_{ti}^2, k_{tj}^2) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$
$$d_{ij} = \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$

k_t

$$d_{ij} = \min(\frac{1}{k_{ti}^2}, \frac{1}{k_{tj}^2}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$

anti-k_t

Three members of a family of algorithms:

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$

$$p=1 k_t$$

$$p=0 Cam/Aachen$$

$$p=-1 anti-k_t$$

Can we get to know the momentum density of the radiation? Can we subtract it from the jet to find the parton momentum? What is the '**size**' of a jet??

The Active Jet Area

iev 0 (irepeat 24): number of particles = 1428 strategy used = NlnNnumber of particles = 9051Fastlet allows the Total area: 76.0265 calculation of the Expected area: 76.0265 ijet. etaphi Pterr area **areas** of the jets 69.970 0.15050 3.24498 2.625 0.020 Ø. 1.8960.18579 0.13150 59 1 0.020 2 2.33840 3.23960 4.749 0.028 97 0.52394 0.021 3 -3.417963.084 +-26 3.09327 0.023 4 0,10350 2.688 +--5.36525 4.76491 0.012 2.780 +-1.2823.592 +-0.028 30 -566 2 114 + -9112 0 018 25-20 15 10 Try to estimate the 5 active area of each jet Fill event with many very soft particles, count how many are clustered into given jet [NB. This is a **definition**]

Area vs. PT

LHC: dijet event + high-lumi pilup

Area vs. p_T

 p_T /Area is fairly constant, except for the hard jets

Extraction of average noise momentum density

(Taking the median of the distribution is a nice trick to get rid of the possible bias from the few hard jets)

Subtraction

A proper operative definition of **jet area** can be given

When a hard event is superimposed on a **roughly uniformly distributed background**, study of **transverse momentum/area** of each jet allows one to determine the noise density ρ (and its fluctuation) on an event-by-event basis

Once measured, the background density can be used to correct the transverse momentum of the hard jets:

 $p_T^{\text{hard jet, corrected}} = p_T^{\text{hard jet, raw}} - \rho \times \text{Area}_{\text{hard jet}}$

NB. Procedure fully data driven. No Monte Carlo corrections needed in principle

The subtraction: ease of implementation

```
// the input particles' 4-momenta
vector<fastjet::PseudoJet> input_particles;
// choose the jet algorithm
fastjet::JetDefinition jet_def(kt_algorithm,R);
// define the kind of area
fastjet::GhostedAreaSpec ghosted_area_spec(ghost_etamax);
fastjet::AreaDefinition area_def(ghosted_area_spec);
// perform the clustering
fastjet::ClusterSequence cs(input_particles,jet_def,area_def);
// get the jets with pt > 0
vector<fastjet::PseudoJet> jets = cs.inclusive_jets();
// a jet transverse momentum, area, and area 4-vector
double pt = jets[0].perp();
double area = cs.area(jets[0]);
fastjet::Pseudojet area 4vector = cs.area 4vector(jets[0]);
```

```
// get the median, i.e. rho
double rho = cs.median_pt_per_unit_area(rapmax); // or:
double rho_4v = cs.median_pt_per_unit_area_4vector(rapmax);
// subtract
double pt_sub = pt - rho * area; // or:
fastjet::Pseudojet p_sub = jets[0] - rho_4v * area_4vector;
```

NB1. The "_4vector" variants also correct jet directions, and are better for large R NB2. This is a pp case, but heavy ions is similar

Reconstructed Z' mass

Heavy Ion Collisions: PbPb @ LHC

Background much larger than LHC hi-lumi pileup:

$$\frac{dN_{ch}}{dy}\Big|_{y=0} = 1600 \implies \rho_{background} \equiv \frac{dp_T}{dyd\phi} \sim 250 \text{ GeV}$$

HYDJET vI.I

Hence, a jet with R = 0.4 on average gets an additional

$$\Delta p_T \simeq \rho_{background} \,\pi R^2 \sim 100 \,\,\mathrm{GeV}$$

and yet, not so much the size of this background, but rather its **fluctuations**, are the real obstacle to its subtraction

Proposal for Heavy Ion Collisions

Use the same approach (area-based) proposed for pileup:

- study transverse momentum/area of each jet
- subtract contribution proportional to area of each jet

One can also study a subregion and extract the local background level.

Background subtraction in HI event

Start with a hard dijet event

Background subtraction in HI event

Same event on a different scale

Background subtraction in HI event

Embed it into a central Hydjet Pb Pb event

Background subtraction in HI event

Look at P_t /Area for each jet

Background subtraction in HI event

Fit the background $\rho(y)$

[NB: more general functional form needs investigating]

Background subtraction in HI event

Subtract $\rho(y)$ from P_t/Area for each jet

Background subtraction in HI event

Look at resulting corrected $P_t = P_{t,orig} - \rho(y) \times \text{Area}$ Hard jets with roughly correct P_t and y emerge clearly!

A 100 GeV dijet PYTHIA event embedded in a HYDJET Pb-Pb one at the LHC

1. The *pp* hard event generated by PYTHIA only

 The same event embedded in the whole Pb-Pb collisions

3. The result of the subtraction of the back-ground

A 100 GeV dijet PYTHIA event embedded in a HYDJET Pb-Pb one at the LHC

1. The *pp* hard event generated by PYTHIA only

 The same event embedded in the whole Pb-Pb collisions

3. The result of the subtraction of the back-ground

A 100 GeV dijet PYTHIA event embedded in a HYDJET Pb-Pb one at the LHC

1. The *pp* hard event generated by PYTHIA only

 The same event embedded in the whole Pb-Pb collisions

3. The result of the subtraction of the back-ground

40 GeV jets

hard	d event			
i.iet	rap	phi	Pt	area
0	1.138	4,990	46,696	0,807
1	-3.693	0.982	41.942	0.813
2	-0,166	2,638	29,912	1.143
3	0.599	4.654	8.716	0.934
- 4	0.054	1,967	6.157	0.553
5	3,880	3.941	3.238	1.073
6	3,001	3,589	1.840	0,622
7	-0,256	5,169	1,126	0.413

full event subtraction

40 GeV jets

	Full event
i0-	
	···
₀╡ ╷╷╶ ┑╷╕╷┥╷╷╷╷	
₀╡ _┥ ╺╡╘	6
	4

harc	1 event			
i.iet	rap	phi	Pt	area
0	1.138	4.990	46,696	0,807
1	-3.693	0.982	41.942	0.813
2	-0.166	2,638	29,912	1,143
3	0.599	4.654	8.716	0,934
4	0.054	1,967	6.157	0.553
5	3.880	3.941	3.238	1.073
6	3.001	3.589	1.840	0.622
7	-0,256	5,169	1,126	0.413

full event subtraction

i.iet	rap	phi	Pt	area
0	1,094	4.945	160,668	0,521
1	-1,179	1.530	134,888	0.470
2	0,259	5.016	127,540	0.635
3	-2,602	3.506	123,007	0.635
4	0.081	2.138	111.034	0.406
5	-2,250	4.253	110,653	0.406
6	-0.156	2.741	109.869	0.305
7	-3.620	0.856	109.479	0.457
8	2,107	4.399	107,934	0.419
9	0.588	1.614	107.771	0.470
10	1.082	1.989	106,716	0.432
11	-0.165	0.441	105,569	0.495
12	-1.498	0.482	104.687	0.406
13	-0.489	4.917	100,438	0.406
14	0.949	0.054	99,661	0.445
15	0.649	2.721	98,143	0.343
16	1.406	5.541	95,984	0.457
17	2.521	0,778	93,890	0.483

40 GeV jets

hard	d event			
i.iet	rap	phi	Pt	area
0	1.138	4.990	46,696	0.807
1	-3.693	0.982	41.942	0.813
2	-0,166	2,638	29,912	1.143
3	0,599	4.654	8.716	0,934
4	0.054	1.967	6.157	0.553
5	3,880	3.941	3.238	1.073
6	3,001	3.589	1.840	0,622
- 7	-0.256	5.169	1.126	0.413

full event subtraction

10123			011					
i.iet	rap	phi	Pt	area	IPE corre	(rap co	<u>rr phi cor</u>	<u>rr Pt corr</u>)ex
0	1.094	4.945	160,668	0.521	46.22.02	1.073	4.937	48,411
1	-1,179	1.530	134.888	0.470	32.942	-1,203	1.539	33.736
2	0,259	5.016	127.540	0.635	-16.339	100000.0	00.00	0.000
3	-2,602	3,506	123,007	0.635	41,6407	-2,546	3.974	8.290
4	0.081	2,138	111.034	0,406	11,115	0,109	2.211	20,413
5	-2,250	4,253	110,653	0,406	30,719	-2,308	4.313	32,292
6	-0.156	2.741	109.869	0.305	480.,7729	-0.143	2.696	41.763
7	-3.620	0.856	109.479	0.457	41.573	-3.689	0.987	42.644
8	2,107	4.399	107,934	0.419	235.制料:	2.074	4.369	25,428
9	0.588	1.614	107.771	0.470	2,084	0.773	2.281	5.529
10	1.082	1,989	106,716	0,432	11_731	1.023	2.011	13.914
11	-0.165	0.441	105,569	0,495	-6.775	100000.0	00.00	0.000
12	-1,498	0,482	104.687	0,406	17,100	-1,463	0.427	20,104
13	-0,489	4.917	100,438	0,406	8,773	-0,276	5.166	10,850
14	0.949	0.054	99,661	0.445	1.064	0.685	5.813	4.184
15	0.649	2,721	98,143	0.343	21.174	0.664	2.617	23,367
16	1.406	5.541	95,984	0.457	-2.363	1,290	0.769	4.452
17	2,521	0,778	93,890	0,483	2,742	2,503	0.641	4.706

NB. Second and third hardest jets are down in 6th and 7th position in full event but they are recovered after subtraction

Inclusive jets in PbPb at LHC

The scaled pp cross section is recovered after subtraction

NB. No minimum pt cut No a posteriori Monte Carlo correction

Conclusions

'Proper' jet algorithms can (and probably should) be used in heavy ion collisions

- **I** They can be used to **estimate** the level of a uniformly distributed soft background
- They can be used to **subtract** the background contribution from the hard jets