The rapid increase of the parton flux at small x causes a dramatic increase of all cross sections with large momentum transfer in pp collisions at the LHC. In the case of production of jets one may easily exceed the value of the total inelastic cross section.

The problem with unitarity is solved by introducing multiple parton interactions. The simplest case is **double parton scattering**
The hard interactions are well localized in the overlap region of the two interacting hadrons and, in a double parton collisions, the non-perturbative component is factorized into a function which depends on the two fractional momenta and on the relative transverse distance b

as a consequence, the inclusive double parton-scattering cross-section, for two parton processes A and B in a pp collision, is given by

$$
\sigma^{D}_{(A,B)} = \frac{m}{2} \sum_{i,j,k,l} \int D_{ij}(x_1, x_2; b) \hat{\sigma}_{ik}^A(x_1, x_1') \hat{\sigma}_{jl}^B(x_2, x_2') D_{kl}(x_1', x_2'; b) dx_1 dx_1' dx_2 dx_2' d^2b
$$

where $D_{ij}(x_1, x_2, b)$ are the double parton distribution functions
The expression of the cross section simplifies considerably after neglecting correlations in the momentum fraction x. In such a case the two-body parton distributions are given by

$$D_{ij}(x_1, x_2; b) = D_i(x_1)D_j(x_2)F_{ij}^2(b)$$

which leads, for the cross section, to the expression

$$\sigma^D_{(A,B)} = \frac{m}{2} \sum_{ijkl} \Theta_{ij}^{kl} \sigma^S_i(A)\sigma^S_j(B)$$

where

$$\Theta_{ij}^{kl} = \int d^2 b F_i^k(b) F_j^l(b)$$

are geometrical coefficients with dimension an inverse cross section and depending directly on the transverse correlation of the different kinds of parton pairs in the hadron structure.

In the simplest case the functions F_i^k do not depend on the indices i, k and the coefficients are all equal to a universal constant. The double parton scattering cross section is hence given by

$$\sigma_D = \frac{1}{2} \frac{\sigma^2_S}{\sigma_{eff}}$$
The experimental indication is that the value of σ_{eff} is close to 10 mb, which sets the scale of values of σ_S where unitarity corrections are a large effect and need to be resummed. One might hence conclude that one should worry about multiple parton collisions only when the single scattering cross section becomes comparable with σ_{eff}.

On the contrary multiple parton collisions may represent an important effect also in cases where the single scattering cross section is many orders of magnitude smaller than σ_{eff}.

The consideration applies to the interesting case of the production of equal sign W boson pairs.

Notice that the leptonic decay channel of W bosons, which leads to final states with isolated leptons plus missing energy, is very interesting for the search of new physics.

In the SM the production of two equal sign W bosons is a higher order process. Two equal sign W bosons can in fact be produced only in association with two jets.
At the lowest order there are 68 diagrams at $\mathcal{O}(\alpha_W^4)$ and 16 diagrams at $\mathcal{O}(\alpha_S^2\alpha_W^2)$ and although $\alpha_S > \alpha_W$ the electroweak contribution is similar to the strong one.

The corresponding cross section is infrared and collinear safe and can be evaluated without imposing any cutoff in the final state quark jets.
W production cross sections by single parton scattering in pp collisions as a function of the c.m. energy.

Notice that the cross section to produce two equal sign W bosons is five orders of magnitude smaller with respect to the cross section of single boson production.
The same reduction factor is expected for W production through multiple collisions processes:

\[
\sigma_{WW} = \frac{1}{2} \sigma_W \frac{\sigma_W}{\sigma_{eff}}
\]

\[
\frac{\sigma_W}{\sigma_{eff}} \approx \frac{10^2 \text{nb}}{10 \text{mb}} = 10^{-5}
\]

single scattering \(W^+W^+ \) production cross section

double scattering \(W^+W^+ \) production cross section

Frascati, November 13, 2007
The two equal sign W bosons are distributed differently in phase space by the two production mechanisms, which may be separated with a cut of 15 GeV/c in the transverse momenta of the produced Ws.
In pA collisions multiple parton interactions are enhanced by the presence of an additional contribution in the cross section, proportional to $A^{4/3}$.

\[\sigma_D^A = \sigma_D^A \big|_1 + \sigma_D^A \big|_2 \]

same A dependence of a single scattering process

\[\sigma_D^A \big|_1 = \frac{1}{2} \frac{\sigma_W^2}{\sigma_{e,f}} \int d^2b T(b) \propto A \]

\[\sigma_D^A \big|_2 = \frac{1}{2} \frac{\sigma_W^2}{\sigma_{e,f}} \int d^2b T^2(b) \propto A^{4/3} \]

notice the stronger A dependence
Notice that the presence of the term proportional to $A^{4/3}$ in the double scattering cross section gives rise to a very strong antishadowing effect.

The effect is shown in the figures below, where the W production cross sections are compared in pp and in pA collisions, after dividing by the atomic mass number A.
In the case of pA collisions the distribution in transverse momenta of the W^+W^+ bosons is dominated by the contribution of multiple parton interactions down to transverse momenta of 40 GeV/c.
Cross sections of e^+e^+ production, through W^+W^+ production and decay (by single and double parton interactions), in pp (left figure) and pA collisions (right figure) as a function of the minimum transverse momentum p_t^cut of each positron. The **antishadowing** effect is apparent in the comparison of the two figures. In the case of pA collisions the cross section has been divided by the atomic mass number A.
Distribution in transverse momentum and rapidity of the W^+ bosons (left figure) and of the decay leptons (right figure) in pA collisions. The W bosons are produced with small transverse momentum while the rapidity distribution of the W boson reminds the momentum of the originating up quark. The asymmetry between the two peaks is due to the different content of up quarks in the proton and in the pp, pn and nn nuclear pairs, which undergo the double interaction process. The distributions of the final state charged leptons is peaked at the same rapidity of the parent W boson and at a transverse momentum corresponding to 1/2 of the W boson mass.
Distribution in phase space in the case of single parton collisions

Distribution of equal sign W bosons (left figure) and of the decay leptons (right figure) generated by single parton collisions in pA interactions as a function of rapidity and transverse momentum.
Distribution in rapidity of charged leptons in the intervals 33 GeV/c < pt < 45 GeV/c (left panel) and 39 GeV/c < pt < 42 GeV/c (right panel). The green histograms refer to the contribution of double parton interactions, the blue histograms refer to the contribution of single parton interaction.

The contribution from double scattering may hence be easily disentangled.
Antishadowing is a general feature of multiple parton interactions and the effect is obviously greatly enhanced in the case of AA collisions.

In pp collisions the production cross section of equal sign W boson pairs is more than two orders of magnitude smaller, as compared with the cross section of opposite sign W boson pairs production.

In AA collisions the contribution of multiple parton interactions to equal sign W boson pairs production is greatly enhanced.

As a result, in AA collisions equal sign W boson pairs are produced with a rate similar to the rate of production of opposite sign W boson pairs

Single and double parton scattering contributions to the W^+W^- production cross section compared with the double parton scattering cross section in a central Pb-Pb collision at the LHC

\[
\left. \frac{d\sigma(W^+W^-)}{d^2b} \right|_{b=0} = 35 \frac{\text{nb}}{\text{fm}^2} \quad \text{single scattering}
\]

\[
\left. \frac{d\sigma(W^+W^-)}{d^2b} \right|_{b=0} = 87 \frac{\text{nb}}{\text{fm}^2} \quad \text{double scattering}
\]

Double parton scattering contributions to the W^+W^+ production cross section in a central Pb-Pb collision at the LHC

\[
\left. \frac{d\sigma(W^+W^+)}{d^2b} \right|_{b=0} = 62 \frac{\text{nb}}{\text{fm}^2}
\]
W⁺W⁻ and W⁺W⁺ production cross sections as a function of the impact parameter b, in Pb-Pb collisions at the LHC
Concluding summary

Equal sign W boson pairs are produced by a higher order process in the SM.

As a consequence, in **pp collisions** at the LHC, the cross section to produce two equal sign W bosons is more than two orders of magnitude smaller, as compared with the cross section to produce two opposite sign W boson.

In **pp collisions** at the LHC, the cross sections to produce two equal sign W bosons, through single and double parton collisions, are similar in magnitude.

The two equal sign W bosons and the corresponding decay leptons are however distributed very differently in phase space by the two production mechanisms.

Differently with respect to the more conventional single scattering large p_T processes, the **double parton scattering** processes are anti-shadowed in collisions with nuclei. Correspondingly the rate of two equal sign W bosons production is significantly increased in pA collisions.

The anti-shadowing effect is greatly enhanced in AA collisions. As a consequence in AA collisions equal sign and opposite sign W boson pairs are produced with similar rates.

Frascati, November 13, 2007
1) Underlying Event in Jet and Drell-Yan Events at the LHC
2) Minimum Bias at the LHC (Multiplicities, P_T spectra)
3) Double Parton Scattering at the LHC
4) Tuning of Monte Carlo Models

on behalf of MB&UE@CMS

Florida: Darin Acosta, Rick Field, Khristian Kotov
INFN/Perugia: Filippo Ambroglini, G.Mario Bilei, Livio Fanò
NTU: Paolo Bartalini, Min-zu Wang
Hamburg: Florian Bechtel, Peter Schleper
INFN/Trieste: Treleani

Frascati, November 13, 2007