

Outline

- Relevant muonic signals in the dimuon spectrometer
- Quick Update on dHLT Status
- Reminder : dHLT Design and Algorithms
- Baseline performances of L0 and dHLT
- Physics possibilities with dHLT extensions

Physics with the dimuon spectrometer

- The spectrometer designed to measure heavy quarkonia via the dimuon channel (Also sensitive to heavy flavour via single muon decay)
- In general, "signal" is considered to be heavy quarkonia (J/Psi and Upsilon families), while background is considered to be high-pT muons from other sources :
 - charm $(D0, D0, D\pm, Ds, \Lambda\pm)$
 - beauty (B 0 , B 0 , B \pm , B 0 , B s , Λ 0 , Λ 0) and
 - hadron decay
- Although these are important and interesting to study in their own right, we will focus on the heavy quarkonia for now...

3

The dimuon spectrometer trigger ALICE-INT-2006-0002 version 1.0

- L0 trigger designed with these sources in mind :
 - 6 trigger signals delivered to ALICE CTP < 800 ns after interaction, at 40 MHz frequency:
 - At least one single muon above low (high) pT cut, (single muon low (high) pT)
 - At least two muons with opposite signs, each of them above low (high) pT cut, (unlike-sign dimuon low (high) pT)
 - At least two muons with same signs, each of them above low (high) pT cut (like-sign dimuon low (high) pT)
- The choice of the low- (1 GeV/c) and high (2 GeV/c) pT cut represents a compromise between background rejection and signal detection efficiency in the mass regions of the J/Ψ and Y resonances respectively
- But what if we could improve the background rejection without cutting out any of the rare signals ?
 - Refine the results of the L0 algorithm with a higher level of processing

4

di Fisica Nucleare

ALICE-Italia, LNF 14/11/2007

The algorithms in brief :

- Hit reconstruction performed on tracking stations 4 and 5. Algorithm applies a DC cut to all channels, then looks for 3 pad clusters on the bending and non-bending plane separately. The centre of gravity is calculated to give the reconstructed X and Y coordinate. X and Y is merged to give reconstructed hit.
- Trigger reconstruction is simply a data transformation from the DDL streams from trigger electronics. The X-Y bit patterns are converted into floating point coordinates in global coordinates.
- Tracking uses a track following algorithm which tracks back through the muon filter wall to stations 4 and 5. Circular regions of interest are used to search for and select reconstructed hit candidates forming part of a track. Pt is then estimated from the spatial information on the tracking chambers.

ALICE-Italia, LNF 14/11/2007

dHLT Current Status :

- All components tested and performing according to design parameters
 written up in ALICE-INT-2007-022 v.1
- Full stress tests have previously been performed in Cape Town and at CERN
- dHLT hardware is installed, waiting for fibres from the spectrometer (and other systems to HLT)
- Currently preparing for FDR and general commissioning...
 - dHLT development per se is frozen,
 - working on implementing all the missing interfaces (monitoring, calibration, etc)
 - Have to be ready for dimuon spectrometer and DAQ commissioning, whenever it will be.

dHLT Performances at a Glance

Tracker resolution

- The resolution at pT equals
 - 1 GeV/c is 0.13 \pm 0.01 GeV/c, thats $\sim 13\%$ of pT,
 - 2 GeV/c is 0.18 \pm 0.01 GeV/c, or ~10%.
- Resolution quite insensitive to spatial resolution in both bending and non-bending planes.
 - this is probably a good thing during those first, uncertain runs...
 There will probably be a lot of noise, but our tracker will be able to handle it !

dHLT Tracker : pT Cut Resolution/Fake Tracks/Detection Efficiency

- Sharper cut than L0
- Above 97% and flat for all numbers of tracks in the spectrometer.
- Fake hits (all tracks found that are not muons) grows quite rapidly for large numbers of tracks in the spectrometer, but acceptable for p+p runs.

Signal detection and backgound rejection – comparison with L0

- J/psi detection efficiency is 52.6% with a 1GeV/c Pt cut on L0 and 75.7% without the cut
- Upsilon detection efficiency is 91.3% with a 2 GeV/c Pt cut on L0 and 94.8% without the cut.
- Background rejection for nominal central events is about 4 to 5 times better than L0 alone for the 1GeV/c Pt cut and about 2 times better for the 2GeV/c Pt cut.

pT cut	HIJING central event rejection (%)					
(GeV/c)	dHLT		LO			
1.	13.		3.			
2.	76.		40.			
Particle	pT cut Detect		tion efficiency (%)			
	(GeV/c)	dHLT		LO		
]/ψ	1.	52.6		71.		
Y	1.	94.8		97.		
Y	2.	91.3		91.3		88.

Trigger rates

ALICE-INT-2006-0002

		φ	٦V	Ψ	Ψ'	Υ	Y'		Υ"
	σ ^[QQ] (μb)	120000	54	.1	7.8	1.13	0.52	2	0.23
p-p	f _{trig} (×10⁻³ Hz)	1350	43	30	7.9	3.8	0.9	6	0.57
√s _{NN} = 14 ToV	f ^{I−pt} (×10 ⁻³ Hz)	310	34	0	6.9	3.8	0.9	6	0.57
14 160	f_{trig}^{h-pt} (×10 ⁻³ Hz)	43	10)0	2.4	3.5	0.8	8	0.53
		f ^{coll} (I	f ^{coll} (Hz)		^{all-pt} (HZ)	f ^{I-pt} (Hz)		f ^{h-pt} (Hz)	
Pb-Pb , single muons		A 1(- 4 10 ³		1700	110	00		450
Pb-Pb , unlike-sign dimuons		s 4 IC			930	33	330		65
Ar-Ar , single muons		1.5.1	- 1.5 10 ⁵ -		26000	10000		3000	
Ar-Ar , unlike-sign dimuons		5 I.5 I			4500	630		73	
p-p , single muons		0.10	- 2 10 ⁵		1850	51	0		225
p-p , unlike-sign dimuons		210			27 (±10)	10 (:	10 (±5)		5 (±3)

Table 16: Trigger rates for Pb-Pb, Ar-Ar and p-p minimum bias collisions, for single muons and unlike-sign dimuons, and for all-pt, I-pt and h-pt cuts.

Trigger Rates (2) – What can we do with the dHLT ?

- dHLT can handle ~1.7 kHz on current architecture for 150 single muons per event
 - compare with expected max. multiplicity of single muons on trigger stations
 6.25
- However, spectrometer can only be read out max ~ 1.2 kHz to avoid dead-time effects.
- Nonetheless, we can in principle have only all-pT L0 signals, saturate the trigger rate and still respect bandwidth constraints, rejecting almost all background.

		pions, kaons	charm	beauty	Total
Pb-Pb	$\mathrm{m}_{\mu}^{\mathrm{all-pt}}$	4.84	1.23	0.16	6.25
b < 5 fm	${\sf m}_{\mu}^{{\sf I}-{\sf pt}}$	1.50	0.47	0.11	2.09
	${\sf m}^{{\sf h}-{\sf pt}}_\mu$	0.42	0.13	0.05	0.64

ALICE-INT-2006-0002

Systematic Studies :

- We have shown that we have a fast, high-res online processing system
 can make more accurate and therefore more selective cut.
- But what are we really selecting when we make the pT cut ? Have to perform systematic studies, to determine
 - Bias introduced with the various dHLT cuts
 - S/B as a function of pT and multiplicity, in order to optimise pT cuts.
 - Acceptance as a function of search region on tracking stations
- Define "very rare" topologies, which could override any processing underway to prioritise trigger signals (e.g. very high pT single muons from Z)
- Etc work ongoing (but takes a second place to commissioning at this point)

Extensions to dHLT to study these signals better

- Since the dHLT is based on a modular architecture, algorithms can be swapped in and out, at any level, provided they respect basic interfaces
- In particular, we have developed a hierarchical tracker, using input from all spectrometer DDLs, and performing tracklet and track finding in parallel at every level
 - Advantages :
 - Can perform a Branson and energy-loss corrections (more points as input)
 - Can provide a fit quality (Manso algo only uses 2 points)
 - Much sharper pT resolution, depends on hit-rec resolution
 - Hence sharper mass resolution...
 - Disadvantages :
 - Not properly tested in a systematic way (has to wait until after first run)
 - More processing time needed than Manso (but not as much as you might think – it's a parallel algorithm. And if besides, CPU's are not really the problem
 - Requires more input (DDLs from all stations, and hence hit rec on all stations – non trivial due to hardware of the detectors.)
 - Requires ITS Vertex position (can be given by ITS-HLT though...)

17

Hierarchical Tracker pT cut resolution :

 Note – pT resolution much sharper even than Manso algorithm

Istituto Nazionale

di Fisica Nucleare

Invariant Mass Resolution

• What resolution can we expect from the online tracking algorithms ?

Invariant	mass resolution	(GeV/c^2)
	J/psi	Upsilon
LO	0.62	2.24
Manso	0.266	0.94
Hierarchical	0.183	1.04

- These numbers are somewhat realistic (obtained from very large samples) but...
- We can think about opening the possibility of implementing an invariant mass trigger.
 - Depends on how much extra processing time is required
 - If we can be sure to select properly

Conclusions

- dHLT components are fully designed and almost completely implemented (some external interfaces missing)
- Full Project Review published as Internal Note (Nov. 2007), contains full performance parameters of all algorithms studied so far.
- dHLT can provide higher resolution and hence selectivity of muon tracks, online, using seeds from L0
- Using dHLT as a filter on L0 ApT triggering can retain almost all the signal and reject almost all of the background (depending on colliding system)
- Several systematic MC studies have to be performed to ensure that the dHLT is really performing as we think it should.
- Some very interesting possibilities for sophisticated event topology selection using more sophisticated tracking algorithm.
- Work in progress !
- Thanks to A. Szostak (INFN, CA), I. Das (Kolkata), HLT team (Heidelberg and CERN) and C. Cicalo (dHLT Co-ordinator, INFN, CA)

INFN Istituto Nazionale di Fisica Nucleare

20