

INFN
Laboratori Nazionali
Di Frascati
Via Enrico Fermi, 40
00044, Frascati (Roma)
www.lnf.infn.it

LNF STAGE REPORT

By

Davide Bottoni & Giorgio Castellani

Stage aim

The main purpose of the stage was to introduce us to the following topics:

- C++ language and object-oriented programming.
- Linux operating system.
- Digital electronics and computers architecture.

As conclusion of the stage and synthesis of the acquired knowledge, we have designed and realized the hardware and the software of a device for interfacing a PC parallel port with a 7-segment display and a buzzer.

Materials and instruments employed

We have used a PC equipped with Red Hat Linux 7.2 operating system and the GNU C++ compiler for software development. The design and realization of the interface circuit has required the use of some electronic components and of their datasheets, a breadboard, a soldering iron, a power supply and a flat cable for connecting our circuit to the parallel port of the computer.

What we have learned

- LINUX
 - How to install the Linux *Red Hat 7.2* operating system.
 - Users' settings.
 - Basic commands of the "shell". (We used the "Tcshell").
- C++
 - The concept of object-oriented programming.
 - Classes and objects.
 - Basic functions of the C++ language.
 - The typical structure of a C++ program.
 - How to compile a C++ program.

- COMPUTER ARCHITECTURE

- Differences between analog and digital electronics: the sampling.
- Number systems (binary, octal, hexadecimal).

- Logical operators (AND, OR, XOR, NOR, NAND ...) and truth tables.
- Electronic implementation of the logic operators: the "gates".
- Design example: a four-bit comparator.
- Combinatorial and sequential networks.
- Flip-flops.
- Typical digital functions and their implementation in integrated circuits: registers, counters, comparators, shift registers, memories.
- What is a microprocessor:
 - the internal structure of a CPU.
 - the concept of "bus".
 - addressing modes.
 - memory and I/O handling.
 - interrupts.
 - Machine language and assembler language.

Results: design and realization of the interface circuit

- THE INTERFACE HARDWARE

- How to read a datasheet and made a simple project.
- Practical realization of an electronic circuit:
 - Arrangement of the components on the breadboard.
 - Welding and wiring the components on the breadboard.

- THE INTERFACE SOFTWARE

The software integrates the low-level functions for accessing the PC parallel port with a main structure that allows to drive our interface circuit using the PC keyboard. The various functions of the software are invoked by pressing a proper key:

- Count up / count down with final sound of the buzzer.
- Display an alphanumeric character.
- Display a short phrase.

The software is structured in the following source files:

- DISPLAY.H

It is the Class definition file: it contains the declarations of the data and functions used inside the class.

- DISPLAY.C

It is the file containing class and functions implementation.

- DISPLAY MAIN.C

It is the Main Program where we create an object of the class "Display" and recall its functions.

Appendices

SOURCE CODE LISTS

```
DISPLAY. H
```

class Display{

public:

```
Display();
    Display(int port_addr);
    void Scrivi(char c);
    void Bip(int n);
   int Cerca (char d);
    void Contasu();
    void Contagiu();
    void Frase();
private:
    int port;
    void Clock();
};
DISPLAY.C
# include "display.h"
# include < sys/stat.h>
# include < sys/io.h>
# include < stdlib.h>
# include < iostream.h>
# include < stdio.h>
# include < unistd.h>
Display::Display(){
   port = 0x378;
         (ioperm(port,3,1)!=0) \{
   cout< < "la porta non si apre"< < endl;</pre>
   exit(1);
  }
}
Display::Display(int port_addr){
   port= port_addr;
         (ioperm(port,3,1)!=0) \{
   cout < "la porta non si apre" < < endl;
   exit(1);
  }
}
void Display::Bip(int n){
   char bip=0xff;
```

```
Scrivi(bip);
  usleep(n);
  Scrivi(blk);
}
void Display::Clock(){
  outb(0x00,port+2);
  outb(0x01,port+2);
  outb(0x00,port+2);
int Display::Cerca(char d){
  char lista[2][29] = {
 {'0','1','2','3','4','5','6','7','8','9','A','B','C','D','E','F','G','H','I','J','L','N','O','P','R','S','T','U','Y'},
 0x61,0x47,0x2b,0x23,0x0c,0x2f,0x12,0x07,0x63,0x19
     };
  if (d > 97 \& d < 122) d = d-32;
  for (int i=0; i<29; i++)
        if (lista[0][i] = d) return (int)lista[1][i];
  }
  return -1;
}
void Display::Scrivi(char c){
  outb(c,port);
   Clock();
}
void Display::Contasu(){
 const int numeri[10]=\{0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x18\};
 for (int i=0; i<10; i++)
                outb(numeri[i],port);
                Clock();
                sleep(1);
 }
}
void Display::Contagiu(){
 const int numeri[10]=\{0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x18\};
 for (int i=10; i>=0; i--){
                outb(numeri[i],port);
                Clock();
                sleep(1);
 }
}
void Display::Frase(){
    const int bella_ci[12] = \{0x03,0x06,0x47,0x47,0x08,0x7f,0x46,0x4f,0xff,0x7f,0xff,0x7f\};
    for (int i=0;i<12;i++){
     outb(bella_ci[i],port);
     Clock();
     sleep(1);
}
```

```
# include < iostream.h>
# include < stdio.h>
# include < stdlib.h>
# include < unistd.h>
# include < curses.h>
# include "display.h"
main(){
     int b;
     char a=99;
      Display Disp;
                while (a! = 27)
                             system("clear");
                             cout < < "\tQuesto e' il programma per la gestione del display" < < endl;
                             cout < < endl;
                             cout < < " \ TBIP
                                                                                                                                 [$] " < < endl;
                             cout < < "\tCONTA IN GIU" [+] " < < endl;

tcout < < "\tFD A CP" [-] " < < cm. 11 " < < cm. 21 " < 
                                                                                                                                         [!] " < < endl;
                              cout < < "\tFRASE
                             cout < < "\tCARATTERE ALFA-NUMERICO [a-z][0-9] " < < endl;
                             cout < < "\tEXIT
                                                                                                                                     [esc] " < < endl;
                             cin > > a;
                             switch (a){
                             case ' ':
                                                       break;
                             case '$':
                                                       Disp.Bip(1000000);
                                                       break;
                             case '+ ':
                                                       Disp.Contasu();
                                                       Disp.Bip(1000000);
                                                       break;
                             case '-':
                                              Disp.Contagiu();
                                                       Disp.Bip(1000000);
                                             break;
                             case '!':
                                             Disp.Frase();
                                             break;
                             default:
                                             b=Disp.Cerca(a);
                                                       if (b< 0) {
                                                            system("xkbbell");
                                                             cout < < "Carattere non valido\n";</pre>
                                                            sleep(1);
                                                         }
                                              else {
                                                            Disp.Bip(20000);
                                                            Disp.Scrivi((char)b);
                             }
           }
```

THE INTERFACE CIRCUIT

SCHEMATIC DIAGRAM

PHOTOGRAPH OF THE CIRCUIT

