STAGE INVERNALE I.N.F.N 2005

Spettrometria γ mediante rivelatore a scintillazione Nal(TI)

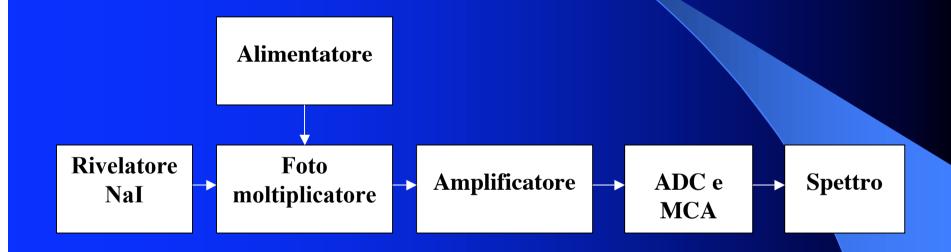
C. Violante⁽¹⁾, A. Luzi⁽¹⁾, E. Aversa⁽²⁾, S. Zuccato⁽³⁾, M. La Salvia⁽³⁾

- (1) I.T.I.S. E. Fermi, Frascati
 - (2) I.T.I.S. H. Hertz, Roma
- (3) I.T.I. S. E. Fermi, Roma

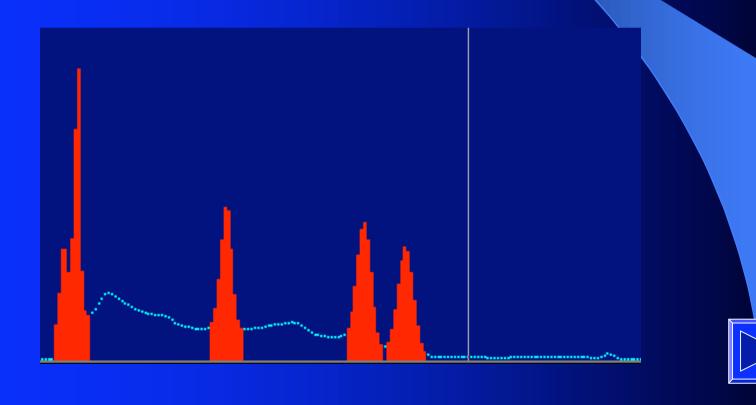
Stage svolto presso l' U.F. Fisica Sanitaria dei LNF

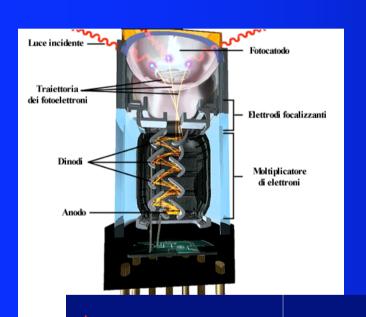
Argomenti trattati

Fisica delle radiazioni e dei rivelatori.


(Fotoni ionizzanti con energia tra 0.1 e 2.0 MeV)

- Studio sperimentale dello scintillatore NaI(Tl)
- Analisi qualitativa e quantitativa dei radionuclidi presenti in campioni di misura


Descrizione strumentazione: catena di acquisizione

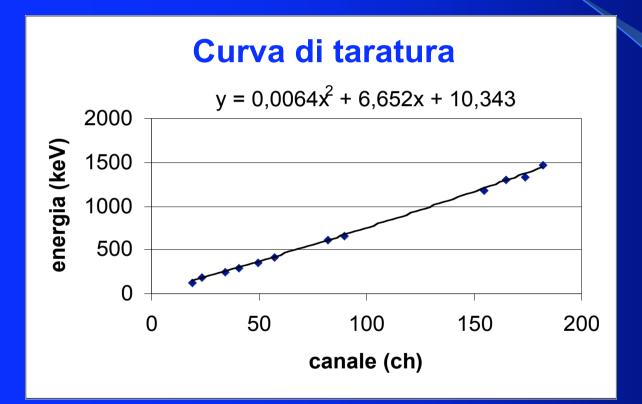

Il requisito fondamentale degli spettrometri per particelle nucleari è la linearità tra l'energia depositata nel rivelatore e l'ampiezza dell'impulso elettrico

Lo spettro

Lo spettro è un grafico che riporta, sull'asse x, gli indirizzi delle celle di memoria del MCA; sull'asse y il numero di conteggi per cella. La forma dello spettro dipende dall'importanza dei diversi effetti di interazione dei fotoni con il rivelatore, quindi dalla loro energia

Descrizione del lavoro sperimentale

- + Ricerca del punto di lavoro del NaI(Tl)
- + Taratura in energia
- + Taratura in efficienza
- + Analisi di un campione incognito
- + Conclusioni


Calibrazione in energia dello spettrometro

La calibrazione è la procedura che consente di assegnare ad ogni canale il corrispettivo valore in energia.

Per fare ciò occorre trovare almeno due punti ad energia nota nello spettro e determinare la retta passante per essi.

La curva di taratura sarà tanto più accurata quanti più fotoni ad energia nota si utilizzano.

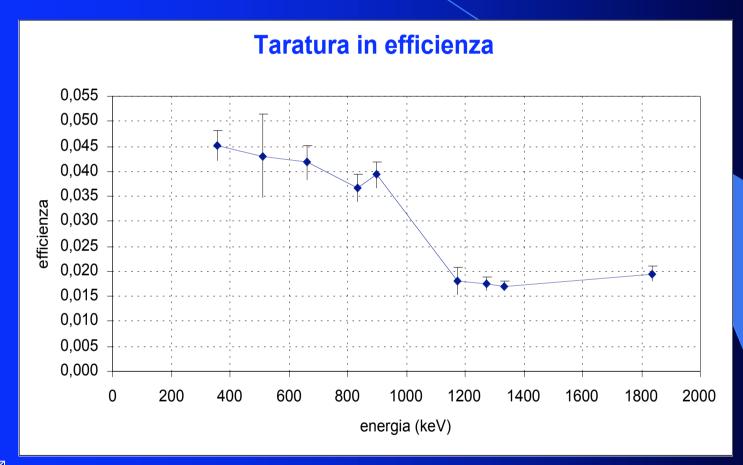
Taratura in energia mediante sorgenti γ di diversa energia

L'andamento dei punti sperimentali si adatta perfettamente ad un polinomio di secondo grado

Taratura in efficienza mediante sorgenti γ tarate

L' efficienza è definita come il rapporto tra i fotoni rivelati nello spettro ed i fotoni emessi della sorgente nello stesso tempo

 $= \mathbf{R} / \mathbf{k} \mathbf{A}$


R = rateo di conteggio (cps)

K = yield della riga fotonica

A = attività della sorgente di taratura

Si prendono differenti sorgenti e si determina, relativamente all' energia di emissione dei fotoni, l' efficienza _.

Curva di taratura in efficienza

Esercizio finale Riconoscimento di un radionuclide incognito

Canale	E calcolata(keV)	E effettiva(keV)	cps	eff	A(Bq)	inc(Bq)
57,3	413	416,86	7,65	0,041	639	90
107,88	802	818,7	1,88	0,033	496	104
141,86	1083	1097,3	7,81	0,021	661	40
164,66	1279	1293,54	9,75	0,017	680	122
241,07	1986	2112,1	1,13	0,013	560	67

Il campione identificato risulta essere l'In^{116m}.

Il valore più attendibile per l'attività di In^{116m} nel campione risulta essere:

$$A_{best} = (630 \pm 30) \; Bq$$

Conclusioni

Lo stage invernale INFN 2005 è stato soddisfacente: oltre allo studio teorico dei problemi connessi con la rivelazione delle radiazioni ionizzanti e della fisica dei rivelatori, è stato effettuato uno studio sperimentale, mediante uno scintillatore allo ioduro di sodio [Nal(TI)], nell'ambito del quale sono state fatte valutazioni sia qualitative sia quantitative di campioni radioattivi.

Sono state approfondite tecniche di misura regolarmente impiegate nei campi della della sorveglianza ambientale e della radioprotezione.

