



# Acceleratori di particelle- II

M. Boscolo





Frascati, 26 Febbraio 2013

#### Piano del colloquio

- Introduzione alla fisica e tecnologia degli acceleratori
- Lezione I: I fondamenti della macchina acceleratrice di particelle
- Lezione II: acceleratori nel mondo e prospettive



#### Acceleratori nel mondo e prospettive

- A cosa servono gli acceleratori di particelle?
- Schema di un acceleratore a seconda del suo scopo
- Qualche esempio
- Prospettive Acceleratori per la ricerca fondamentale



## Utilizzazioni degli Acceleratori nel mondo

|                                          |        | Gli acceleratori usati per la ricerca pura                                          |  |  |  |
|------------------------------------------|--------|-------------------------------------------------------------------------------------|--|--|--|
| CATEGORIA                                | NUMERO | sono costruiti ai limiti della tecnologia                                           |  |  |  |
| Impiantazioni ioniche                    | 7000   | attuale e sono anch'essi ricerca                                                    |  |  |  |
| Altri acceleratori nell'industria        | 1500   | tecnologica.                                                                        |  |  |  |
| Acceleratori in ricerca non-<br>nucleare | 1000   | BASIC RESEARCH<br>fudamental forces                                                 |  |  |  |
| Radioterapia                             | 5000   | Heavy particle therapy   Nuclear reactions SYNCHROTRON                              |  |  |  |
| Produzione di isotopi per medicina       | 200    | MEDICAL APPLICATION<br>Backscattering<br>MATERIAL<br>Microstructures<br>lithography |  |  |  |
| Adroterapia                              | 20     | Ceramics ANALYSIS SYNCHROTRON<br>Glasses Metals RALETION                            |  |  |  |
| Sorgenti di luce di sincrotrone          | 70     | 1970 Radioisotope production                                                        |  |  |  |
| Ricerca nucleare e subnucleare           | 110    | Semiconductors<br>ION 1965<br>IMPLANTATION                                          |  |  |  |
| TOTALE                                   | 15000  | Polymermodification by e- beams<br>ELECTROSTATIC 1940                               |  |  |  |
|                                          |        | ELECTROP ACCELERATORS                                                               |  |  |  |

static fields — Accelerators — alternating fields NUCLEAR PHYSICS







### Colliders

| Location             | Name (type <sup>[a]</sup> ) | Max. $E_{\rm cm}$ (GeV) | Start               | DR <sup>.</sup> Double storage ring     |
|----------------------|-----------------------------|-------------------------|---------------------|-----------------------------------------|
| Stanford/SLAC, USA   | $CBX^{[b]} (e^{-}e^{-}DR)$  | 1.0                     | 1963                |                                         |
|                      | Spear $(e^+e^-SR)$          | 5.0                     | 1972                | SR: Single storage ring                 |
|                      | $PEP (e^+e^-SR) [5]$        | 30                      | 1980                | L C: Linear collider                    |
|                      | SLC $(e^+e^-LC)$ [6]        | 100                     | 1989                |                                         |
|                      | PEP-II ( $e^+e^-DR$ ) [7]   | 10.6                    | 1999 <sup>[d]</sup> |                                         |
| Frascati,Italy       | AdA ( $e^+e^-SR$ )          | 0.5                     | 1962                | <u>}</u>                                |
|                      | Adone ( $e^+e^-SR$ )        | 3.0                     | 1969                |                                         |
|                      | $DA\Phi NE (e^+e^-SR)$      | 1.0                     | 1997 <sup>[d]</sup> | Dall'idea geniale di Bruno              |
| Novosibirsk, Siberia | VEP-1 ( $e^-e^-DR$ )        | 0.26                    | 1963                | Touschek di far scontrare               |
|                      | VEPP-2/2M ( $e^+e^-SR$ )    | 1.4                     | 1974                |                                         |
|                      | VEPP-4 ( $e^+e^-SR$ )       | 14                      | 1979                | particelle con                          |
| Cambridge, USA       | CEA Bypass ( $e^+e^-SR$ )   | 6                       | 1971                | antiparticelle che, nella               |
| Orsay, France        | ACO $(e^+e^-SR)$            | 1.0                     | 1966                | loro annichilazione                     |
| -                    | DCI ( $e^{\pm}e^{\pm}DR$ )  | 3.6                     | 1976                |                                         |
| DESY, Germany        | Doris $(e^+e^-DR)$          | 6.0                     | 1974                | avrebbero rilasciato tutta              |
|                      | Petra ( $e^+e^-SR$ )        | 38                      | 1978                | la loro energia per creare              |
|                      | Hera $(e^{\pm}p DR)$ [8]    | 160                     | 1992                |                                         |
| CERN, Europe         | ISR (pp DR) [2]             | 63                      | 1971                | nuove particelle.                       |
|                      | Spp̄S (pp̄ SR) [9]          | 630                     | 1981                |                                         |
|                      | LEP $(e^+e^-SR)$ [10]       | 190                     | 1989                |                                         |
|                      | LHC (pp DR) [11]            | 14,000                  | 2004 <sup>[d]</sup> |                                         |
| Brookhaven, USA      | RHIC (heavy ions DR) [12]   | 200/u <sup>[c]</sup>    | 1999 <sup>[d]</sup> |                                         |
|                      | RHIC (pp DR)                | 500                     |                     |                                         |
| Cornell, USA         | CESR $(e^+e^-SR)$           | 12                      | 1979                |                                         |
| KEK, Japan           | Tristan ( $e^+e^-SR$ ) [14] | 60                      | 1986                |                                         |
|                      | KEK B $(e^+e^-DR)$ [13]     | 10.6                    | 1999 <sup>[d]</sup> | [Handbook of Accelerator Physics and    |
| Beijing, China       | BEPC $(e^+e^-SR)$ [15]      | 3.1                     | 1989                | Engineering, Ed. A. Chao and M. Tigner, |
| Fermilab, USA        | Tevatron (pp SR) [16]       | 1800                    | 1987                | World Scientific] 6                     |



6

### Sviluppo degli Acceleratori

- Acceleratori dedicati alla fisica fondamentale sono pochi rispetto a quelli dedicati all'industria e alla medicina,
- Tuttavia le idee più innovative si hanno sugli acceleratori dedicati alla fisica fondamentale,
- è su questi che si sperimentano le tecnologie più innovative, che vengono poi applicate sugli altri

Ecco perchè sono così significativi i collisori, Ne parleremo in maggior dettaglio



## Esempi di applicazioni degli acceleratori di particelle

- Acceleratori per sterilizzazione dei cibi e dei contenitori.
  - Impiantazione di ioni in semiconduttori.
- Lineari Circolari Acceleratori di elettroni come sorgenti per la produzione di **radiazione di sincrotrone**, dall'infrarosso ai raggi X, utilizzata in moltissime applicazioni, tra cui: scienza dei materiali, fisica dello stato solido, microlitografia, biochimica, microscopia.
  - Lineari Circolari

Lineari

#### Applicazioni mediche:

- acceleratori di elettroni come sorgenti di raggi X.
  - fasci di ioni o protoni per adroterapia.



## Esempi di applicazioni degli acceleratori di particelle

- Acceleratori per sterilizzazione dei cibi e dei Lineari contenitori.
  - Impiantazione di ioni in semiconduttori.
- Lineari Circolari Acceleratori di elettroni come sorgenti per la produzione di **radiazione di sincrotrone**, dall'infrarosso ai raggi X, utilizzata in moltissime applicazioni, tra cui: scienza dei materiali, fisica dello stato solido, microlitografia, biochimica, microscopia.
  - Lineari Circolari

#### Applicazioni mediche:

- acceleratori di elettroni come sorgenti di raggi X.
- fasci di ioni o protoni per adroterapia.



### Acceleratori Lineari e<sup>-</sup>

#### usati per molti scopi:

qualche esempio...



## Esempi di applicazioni degli acceleratori di particelle

- Acceleratori per sterilizzazione dei cibi e dei Lineari contenitori.
  - Impiantazione di ioni in semiconduttori.
- Lineari Circolari Acceleratori di elettroni come sorgenti per la produzione di radiazione di sincrotrone, dall'infrarosso ai raggi X, utilizzata in moltissime applicazioni, tra cui: scienza dei materiali, fisica dello stato solido, microlitografia, biochimica, microscopia.

Lineari Circolari

Applicazioni mediche:

- acceleratori di elettroni come sorgenti di raggi X.
- fasci di ioni o protoni per adroterapia.

#### Radiazione di sincrotrone

Una particella carica che viaggia lungo una traiettoria curva emette fotoni, la cui energia dipende dalla massa, dall'energia della particella e dal raggio di curvatura della Radiazione ben collimata traiettoria

> Particelle in moto su un'orbita circolare quando passano all'interno di un magnete curvante emettono radiazione in direzione tangente alla loro

traiettoria

Una particella carica che viaggia lungo una traiettoria curva **perde energia** 

[/(E/m₀c²)







In un anello di accumulazione l'energia persa viene compensata dalle Cavità a RF

#### Radiazione di Sincrotrone



- A parità di E e  $\rho$  un elettrone emette molta più radiazione di sincrotrone di un protone
- La radiazione di sincrotrone emessa da protoni è stata osservata per la prima volta al Tevatron

(circonferenza L= $2\pi\rho$ )

97.58 m e\* e<sup>-</sup>  $DA\Phi NE U \sim 0.01$ MeV E = 0.51 GeV $U \sim 700$  MeV E = 70 LEP GeV L = 27000e<sup>+</sup> e<sup>-</sup> m U ~ 0.007 MeV E = 7000 LHC L = 27000GeV m р p



#### Anelli di luce di sincrotrone

- Acceleratori circolari ad elettroni sfruttano la radiazione di sincrotrone emessa negli archi per generare una radiazione che viene utilizzata in molti campi di ricerca (scienza dei materiali, fisica dello stato solido, microlitografia, biochimica, microscopia)
- Il fascio di elettroni circolante nell'acceleratore deve soddisfare precise caratteristiche affinche' la luce da esso prodotta sia di buona qualita'.
- Il parametro che determina la qualità di un fascio di elettroni per questo tipo di macchine è la BRILLANZA, concetto molto simile alla luminosità: Quanto più denso il denso di fascio di elettroni circolanti, tanto piu' brillante il fascio di luce di sincrotrone emesso nei magneti curvanti



#### **ELETTRA a Trieste:** anello di accumulazione per luce di sincrotrone



#### http://www.elettra.trieste.it/

photons in the energy range from a few to several tens of KeV with spectral brightness of up to 10<sup>19</sup>photons/s/mm<sup>2</sup>/mrad<sup>2</sup>/0.1%bw



#### Limiti imposti dalla Radiazione di Sincrotrone

L'energia persa per emissione di radiazione di sincrotrone viene reintegrata mediante una **cavità a Radio Frequenza** 

$$U_{MAX} = P_{MAX}^{RF}$$
$$E_{MAX} [GeV] \propto \left(\rho [m] U_{MAX}\right)^{1/4}$$

- Data una certa potenza RF si può costruire un acceleratore con energia maggiore aumentandone il raggio
- Raddoppiare l'energia a parità di potenza RF richiede un acceleratore con raggio 16 volte maggiore

#### QUINDI:

Per via della radiazione di sincrotrone gli acceleratori ad alta energia (circa E > 100 GeV) conviene farli:

- circolari: adroni (protoni, antiprotoni o ioni) o muoni perche' irraggiano molto meno, essendo piu' pesanti oppure
- Lineari e-/e+, non essendoci irraggiamento



#### Acceleratori Lineari e<sup>-</sup> per produrre radiazione coerente molto intensa

- Un linac ad e- accelera pacchetti di elettroni di alta qualità
- I pacchetti di e- accelerati attraversano poi un'ondulatore
- qui generano radiazione coerente, con un'amplificazione esponenziale [PRINCIPIO del FEL-SASE]

(Free Electron Laser-Self Amplified Spontaneous Emission)



## Laser ad elettroni liberi (FEL-SASE)



# I Laser ad Elettroni Liberi sono potenti sorgenti di radiazione elettromagnetica coerente

#### (microonde, UV, raggi X)

con alta potenza di picco e alta brillanza (ordini di grandezza superiori agli anelli di luce di sincrotrone)





LCLS a Stanford per approndimenti sulle applicazioni:

https://portal.slac.stanford.edu/sites/lcls\_public

#### SPARC a Frascati ai LNF

Fotoiniettore ad alta brillanza con varie applicazioni, tra cui:

• FEL

0000000

- Produzione radiazione THz
- Accelerazione a plasma

#### SPARC: schema dell'acceleratore





## Esempi di applicazioni degli acceleratori di particelle

- Acceleratori per sterilizzazione dei cibi e dei Lineari contenitori.
  - Impiantazione di ioni in semiconduttori.
- Lineari Circolari Acceleratori di elettroni come sorgenti per la produzione di **radiazione di sincrotrone**, dall'infrarosso ai raggi X, utilizzata in moltissime applicazioni, tra cui: scienza dei materiali, fisica dello stato solido, microlitografia, biochimica, microscopia.
  - Lineari Circolari

#### Applicazioni mediche:

- acceleratori di elettroni come sorgenti di raggi X.
- fasci di ioni o protoni per adroterapia.



## Adroterapia

Gli Adroni sono nuclei di atomi che, portati ad alta energia da una macchina acceleratrice, sono lanciati come proiettili in grado di danneggiare tessuti malati in massima parte alla fine del loro corso nel corpo del paziente, in corrispondenza del tumore

Un fascio di adroni carico rilascia la maggior parte della sua energia distruttiva) sul bersaglio. La dose al tumore può essere quindi molto elevata mentre i tessuti sani vengono risparmiati.





## CNAO: Centro Nazionale Adroterapia Oncologica a Pavia



M. Boscolo, LNF Masterclass – 26 febbraio 2013

#### CNAO Per approfondimenti: http://www.cnao.it/ Accelerator and Treatement Rooms

INFN ha avuto ruolo di primo piano nella fase di progettazione, realizzazione e messa a punto



## Argomenti della presentazione di oggi

- A cosa servono gli acceleratori di particelle?
- Schema di un acceleratore di particelle a seconda delle applicazioni
- Qualche esempio

#### Prospettive Acceleratori per la ricerca fondamentale



#### Collisori di particelle nei decenni



INFN

Physics-Uspekhi, 2012

28

#### Diagramma dell'energia dei colliders dal 1930 al 2010



INFŃ

#### Luminosita' di un collider

L'idea di base di un collisore e' quella di utilizzare come particelle collidenti particelle ed antiparticelle che, nella loro annichilazione, rilasciano tutta la loro energia per creare nuove particelle.



Il parametro che determina la qualita' di un collisore, fissata la sua energia e il tipo di particelle che si fanno scontrare le une contro le altre, e' la LUMINOSITA' <sub>3</sub>



è proporzionale alla densità dei fasci (numero particelle/area) e alla frequenza di collisione

$$L = f_{collision} \cdot \frac{N_1 N_2}{A} \quad (cm^{-2} s^{-1})$$



Tanti più eventi di fisica quanto più densi i pacchetti dei fasci collidenti



$$f_{\text{collision}} = n_{\text{bunches}} \cdot f_{\text{revolution}}$$
$$f_{\text{revolution}} = 1/T_{\text{rev}} = c / L$$

 $N_{1,2}$  numero di particelle e di antiparticelle nei pacchetti 1 e 2

A area trasversa occupata dai due pacchetti all'IP
































#### Luminosità





## Luminosità



E' definita come la quantità di eventi al secondo per sezione d'urto unitaria

Due particelle che collidono possono produrre tipi diversi di eventi, alcuni più probabili di altri

$$L = \frac{dN_{eventi}/dt}{\sigma}$$

Un evento e' -ad esempio- l'annichilazione di materia-antimateria nel punto di collisione per un dato processo (es. produz. di  $\Phi$  a DA $\Phi$ NE)

 $L\sigma$  = frequenza con cui accadono gli eventi cercati [si misura in s<sup>-1</sup>]

la sezione d'urto  $\sigma$  di un determinato evento è proporzionale alla probabilità che l'evento avvenga si misura in cm<sup>2</sup>



## Esempio: produzione di Φ a DAΦNE





529

$$L = \frac{\dot{N}_{ev}}{\sigma} = f \cdot \frac{N_1 N_2}{A}$$

Per aumentare la luminosità si può:

- 1. aumentare il numero di particelle per pacchetto
- 2. diminuire l'area occupata dai pacchetti (cioè le loro dimensioni trasverse)

#### C'e' un limite alla densità delle particelle in un pacchetto

La luminosita' non puo' aumentare oltre un certo limite, l'acceleratorista in sala controllo cerca di raggiungere tale limite, mantenendolo costante



#### luminosity optimization needs long machine tuning!















M. Boscolo, LNF Masterclass – 26 febbraio 2013 C.Bi

#### Luminosita' di picco nei decenni





M. Boscolo, LNF Masterclass – 26 febbraio

2013

C.Biscari - "High Energy Accelerators"

46

## Tre frontiere di ricerca nella fisica delle alte energie

- "Energy Frontier": collisori ad alta energia per scoprire nuove particelle e sondare direttamente le proprieta' della natura (vedi LHC col bosone di Higgs!)
- "Intensity Frontier": fasci intensi per scoprire le proprieta' elusive dei neutrini e osservare processi rari che sondano la fisica oltre il modello standard (vedi DAΦNE, SUPERKEKB)

Molti esperimenti con neutrini, muoni, kaoni

 "Cosmic Frontier": natura della materia oscura e della energia oscura rivelata usando particelle di alta energia dallo spazio per sondare l'architettura dell'universo. (si usano esperimenti terrestri e basati sullo spazio, non acceleratori terrestri)





- Hadron Colliders (p-p)
  - LHC
- Lepton Colliders (e+e-, μ)
  - Linear e+e- Colliders: ILC and CLIC
  - Circular e+e- colliders: LEP3, DLEP, TLEP, SuperTRISTAN
  - Muon Colliders
- Hadron-Lepton Colliders (p-e)
  - LHeC
  - eRHIC
- HIGGS Factories : Linear, circular, γ-γ, muon colliders
- Plasma accelerators



# adron colliders

## pp Colliders – after 2012



M. Boscolo, LNF Masterclass – 26 febbraio 2013

C.Biscari - "High Energy AccelePators" 12/09/12 Krakow – ESG

#### LHC





#### LHC: collisore protoni -protoni LHC è installato 100 m di profondità! costruito nel tunnel del LEP



- Quattro gigantesche caverne sotterranee ospitano rivelatori enormi
- Fascio di energia mai raggiunta: 14 TeV c.m.
   7 TeV (massima per fascio)
- Circa 40.000 ton a 1.9 K, a temperatura inferiore al freddo cosmico



#### Machine protection – the challenge Situation at 3.5 TeV (in August 2011)



#### Underground









## Costo di LHC



#### Circa € 6•10<sup>9</sup> costo dell' acceleratore





#### Start the protons out here<sup>M</sup>. Boscolo, LNF Masterclass – 26 febbraio 2013



http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html



#### **Evolution of Integrated Luminosity** (August 16)



#### **Evolution of Integrated Luminosity** (August 16)



#### **Evolution of Integrated Luminosity** (August 16)



# Lepton colliders

e

M. Boscolo, LNF Masterclass – 26 febbraio

#### e+/e- Linear Colliders progetti per il futuro: CLIC and ILC



#### http://clic-study.web.cern.ch/CLIC-Study/ http://www.linearcollider.org/cms/



M. Boscolo, LNF Masterclass – 26 febbraio 2013

## CLIC

## ILC

- Dual beam acceleration technology
- R&D at CERN ~ 25 years
- Normal conducting cavities 12 GHz, 100 MV/m
- Maximum energy 3 TeV cm
   Phase I at 0.5 TeV
- International collaboration around CTF3

- Well extablished SC rf technology (TESLA, FLASH, XFEL...)
- Decision in 2004
- Rf cavities ~ TESLA like
  1.3 GHz, 31.5 MV/m
- Maximum energy 1 TeV cm
  Phase I at 0.5 TeV
- GDE (Global Design Effort)
  International collaboration
- Site independent

# example linear e<sup>+</sup>e<sup>-</sup> colliders

**SLAC Linear Collider** Electron Stanford linear collider booster Electrons (e-) - Positrons (e+) (SLC) 1990-1998 3 km Positron source Dumping the only linear collider rings Positron return line so far Particle detector proposed 0.6 GeV (X) -100 m Arc-bending ~20 m magnets Compresso Pre-Lina 6 GeV (S Final focusing Compressor Damping future **Bypass Lines** 136 MeV (L) Ring magnets 50, 150, 250 GeV > (UHE) 2 GeV (S Length for 500 GeV/Beam Electron Main Linac 240-490 GeV (X) linear 326 klystrone 326 klystrons 33 MW, 139 µs 33 MW, 139 µs **CLIC** combiner rings drive beam accelerator drive beam acceleration colliders 2.38 GeV 1.0 GHz 2.38 GeV, 1.0 GHz their kay 72.4 m 1301 148 Em 1 km CR2 434 3 m 1 km (NC), Low Energy IR (90-500 GeV) dela dela High Energy IR 5 km loon (250 GeV to multi-TeV) decelerator, 24 sectors of 868 r 48 km Final 2.75 km Focus Positron Main Linac 240-490 GeV (X) 12 GHz, 100 MV/m, 20.85 e" main linac 3 TeV ILC (SC) 6 GeV (S) 2 GeV (L) Pre-Damping Ring (UHF) c.m. CLIC 3 TeV housier leve: 31 km Injector System for 1.5 TeV 9 GeV 2 GHz or 4 GHz 7 Ring (UHF 136 MeV (L) Compressor 1. Boscolo, LNF Masterclass – 26 febbraio Pre-Linac 6 GeV (S) e medo e" injector 500 GeV c.m. 24 GeV 64 2.4 GeV T DR 2013 ~20 m 0.6 GeV (X) 365m



#### Futuro : e+ e- Linear colliders

#### Sfida tecnologica: Cavità ad alto gradiente

Negli acceleratori lineari non c'è radiazione di sincrotrone: per andare ad altissime energie il futuro è qui. Ricerca tecnologica: capacità di accelerare più velocemente possibile, cioè nel minor spazio possibile

## LEP al CERN di Ginevra 1988-2001

#### II collisore e<sup>+</sup>e<sup>-</sup> a più alta energia: E<sub>CM</sub>=209 GeV, Circonferenza ~ 27 Km





M. Boscolo, LNF Masterclass - 26 febbraio 2013



# **HIGGS Factories**

 $\mathcal{I} = (D_{\mu} \phi)^* D^* \phi - \mathcal{V} \phi) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$ 

M. Boscolo, LNF Masterclass – 26 febbraio 2013



# The X125 Observation

- Since the discovery on 4<sup>th</sup> July, ATLAS and CMS analyses strengthened the significance of the signal
- With the 8TeV dataset, several exclusive channels have >3σ sensitivity



# circular HFs – a few examples



# possible master plan not yet endorsed by CERN management!



# Also: *e<sup>±</sup>* (200 GeV) – *p* (7 & 50 TeV) collision

M. Boscolo, LNF Masterclass – 26 febbraio 2013
### **HIGGS FACTORIES e+e-**



### HIGGS FACTORIES e+e- rough costs estimations (B\$)



# Acceleratori di particelle alla frontiera dell'alta intensita'

Linac ad alta intensita' (neutrini, anti-protoni, muoni, neutroni)

Alta intensita' media

- Ciclotroni ad alta intensita' fasci su targetta (neutroni EDM e muoni, neutrini, anti-protoni, muoni)
  - Examples in Europe are PSI

Alta intensita' istantanea

- Anelli ad alta intensita' (for high intensity single beams and flavor factories e.g. anti-protons, neutrinos, muons, rare-decays and CP violation)
  - Examples in Europe are **PS/SPS at CERN, ISIS** and FAIR
- Anelli e+e- ad alta intensita'

(for high luminosity flavor factories)

Examples are SuperKEKB (there was also SuperB)



### *"Intensity Frontier" Factories* a leptoni (e+e-)

Fabbriche a e+e-, perchè producono tante particelle

### Superfactories

New colliding schemes for reducing beam-beam effects (limiting beam currents and increasing beam dimensions

Factories attualiSchema di incrocio•BEPC II - tauSchema classico•VEPP200 -2 GeVFascio tondo•DAFNE - PHICrab-waist (Superb)•KEKB - BChiusa 30 giugno 2010•SUPER-KEKBFinanziata, in<br/>costruzione



# Crab-Waist Scheme: nuovo schema di collisione

### L'idea del crab waist è semplice di per sè:

1. grande angolo di Piwinski (LPA)

Con un grande angolo di Piwinski l' area di sovrapposizione dei due fasci in collisione diventa più piccola (inoltre, gli incroci parassiti diventano trascurabili)

2. β<sub>y</sub> all' IP ≈ regione di sovrapposizione dei due fasci

questo permette di avere  $\beta_y$  all' IP più piccoli e quindi luminosità maggiore

$$\beta_y^* \ll \sigma_z$$



<u>Bunch length</u> <u>3. due sestupoli detti di crab con fase giusta rispetto all' IP</u>



M. Boscolo, LNF Masterclass – 26 febbraio 2013

P. Raimondi, Nov. 2005/March72006 PRL **104**, 174801 (2010)

# SuperKEKB collider



### $\Phi$ factory: DA $\Phi$ NE ai LNF

#### **D**ouble **A**nnular $\Phi$ or **N**ice **E**xperiments







IL complesso di DAΦNE è formato da tre elementi:
(1) il LINAC;
(2) l'accumulatore;
(3) i due anelli principali.

(4) tre linee di luce di sincrotrone

Le strutture sono state completate nel 1997 e le prime collisioni sono avvenute nel marzo 1998.





## **DAFNE Peak Luminosity**



# Conclusioni

- Qualche applicazione degli acceleratori
  - Medicale
  - Industriale
  - Sorgente di luce per esperimenti di scienza dei materiali, fisica dello stato solido, microlitografia, biochimica, microscopia.
- Panoramica degli acceleratori per la ricerca fondamentale nel mondo:
  - Frontiera Alta energia
  - Frontiera Alta Intensita'

Spero di avervi trasmesso l'idea che la fisica degli acceleratori è un campo fertile con applicazioni molto varie ed interessanti, oltre che un campo complesso che richiede sempre nuove idee e soluzioni tecnologiche per nuove scoperte...



# Slides di riserva, approfondimenti



### Bibliografia

 CERN Accelerator School: Basic course on accelerator optics Yellow Report CERN 94-01 Vol.I

http://cdsweb.cern.ch/record/235242?In=it

- P.J.Bryant, "A Brief History and review of accelerators"
- J. Rossbach, P. Schmuser, "Basic Course on accelerator optics"
- J. Le Duff, "Dynamics and Acceleration in Linear Structures"
- J. Le Duff, "Longitudinal Beam Dynamics and in Circular Accelerators"
- H. Wiedemann, Particle Accelerator Physics, Springer-Verlag
- M. Sands, The Physics of Electron Storage Rings: An Introduction, http://ccdb4fs.kek.jp/cgi-bin/img\_index?197708303, SLAC-121 (1970)
- C. Biscari, Accelerators R&D, PoS EPS-HEP2009:019 (2009)







1994 comincia la costruzione

1997 primo fascio

INFN

1998 prime collisioni

1999-2007 dati a BaBar

2008 Aprile spenta per sempre

Due anelli di accumulazione di e<sup>+</sup>/e<sup>-</sup> uno sopra l' altro.

#### E<sub>CM</sub>~ 10 GeV

L'annichilazione di e+/eproduce quarks-b, il cui decadimento è di interesse per i fisici sperimentali.

#### **PEP-II Records**

#### **Peak Luminosity**

12.069×10<sup>33</sup> cm<sup>-2</sup>sec<sup>-1</sup> 1722 bunches 2900 mA LER 1875 mA HER

Last update:

March 1, 2008

August 16, 2006

#### Integration records of delivered luminosity

|                     | Best shift<br>(8 hrs, 0:00, 08:00, 16:00) | <b>339.0</b> pb <sup>-1</sup>  | Aug 16, 2006        |
|---------------------|-------------------------------------------|--------------------------------|---------------------|
|                     | Best 3 shifts in a row                    | <b>910.7</b> pb <sup>-1</sup>  | Jul 2-3, 2006       |
|                     | Best day                                  | $858.4 \text{ pb}^{-1}$        | Aug 19, 2007        |
|                     | Best 7 days<br>(0:00 to 24:00)            | <b>5.411</b> fb <sup>-1</sup>  | Aug 14-Aug 20, 2007 |
|                     | Best week<br>(Sun 0:00 to Sat 24:00)      | <b>5.137</b> fb <sup>-1</sup>  | Aug 12-Aug 18, 2007 |
|                     | Peak HER current                          | <b>2069</b> mA                 | Feb 29, 2008        |
|                     | Peak LER current                          | <b>3026</b> mA                 | Sep 1, 2007         |
|                     | Best 30 days                              | <b>19.776</b> fb <sup>-1</sup> | Aug 5 – Sep 3, 2007 |
|                     | Best month                                | <b>19.732</b> fb <sup>-1</sup> | August 2007 86      |
| M. Boscolo, LNF Mas | terclassin 26 febbraio 2013               | <b>536</b> fb <sup>-1</sup>    |                     |

#### **KEKB** → SUPERKEKB





Machine Parameters of the KEKB (Nov. 28 2007)

HER

24

839

0.530

13.0

-0.0204

90/0.59

3.38 x 10<sup>-4</sup>

1.1

132@839

m

MHz

nm

mA

mA

m

MV

cm

μ**m** 

min.@mA

10<sup>33</sup>/cm<sup>2</sup>/sec

/fb



# Dov'è R&D degli acceleratori per applicazioni della fisica delle alte energie?

- Acceleratori Lineari e+e- : ricerca nel campo delle cavità acceleranti, a maggior gradiente di accelerazione possibile (CLIC (Cern), ILC)
- Acceleratori **circolari**:
  - p p : LHC presente (Cern) -> il piu' grande al mondo
  - e+e- : collisori sono pochi in funzione (tra cui DAFNE), in costruzione SUPERKEKB (Giappone)
- Muon colliders Neutrino Factories
- Acceleratori a Plasma: il campo elettrico accelerante viene generato da onde di plasma, idea molto innovativa



### Evoluzione dei Collisori nel tempo



Puntini pieni: passati e presenti Puntini vuoti: futuri

- Leptoni (e+ e-)
- adroni (p, ecc.)
   adroni (e-p)

[C. Biscari, PoS EPS-HEP2009:019,2009]

In 50 anni energia e luminosità è aumentata di 5 ordini di grandezza



# Luminosità in funzione dell'energia







Per un aumento simile di luminosità ci vuole un'idea nuova, che cambi il modo di progettare un collider



# Il dipolo criogenico di LHC

The key element - the 1232 dipoles bend the beam around the 27 km circumference



M. Boscolo, LNF Masterclass - 26 febbraio 2013

### Regione d'interazione: schema tradizionale



### Regione d'interazione: schema tradizionale

#### Limite inferiore per β<sub>y</sub> all'IP è imposto dall'EFFETTO CLESSIDRA (*hourglass effect*)

the hourglass effect consists in a luminosity decrease that occurs when the bunch lengths are comparable to or larger than betax\* or betay\*. The decrease is due to the rapid increase of the transverse beam size along the bunch

Tutto il fascio lungo z deve vedere la stessa  $\beta_y$  quindi  $\sigma_z$  più piccolo possibile  $\beta_y^* \approx \sigma_z$ 

 $\sigma_{z} \approx cm \longrightarrow \beta_{y}$  dell'ordine di qualche cm





M. Boscolo, LNF Masterclass – 26 febbraio 2013

# **HIGGS FACTORIES beyond LHC**

# Colliders

- e+e-
- Muons
- γ-γ







Cross-sections for different production mechanisms for a 125 GeV Higgs boson as a function of the e+e- centre-of-mass energy.