

Acceleratori di particelle seconda parte

M. Boscolo

Frascati, 31 gennaio 2012

Argomenti della presentazione

- Stato Acceleratori e futuro
- Collisori circolari per fisica fondamentale:
 - Alta energia adroni (protoni)
 - Alta luminosità leptoni (elettroni)
- Applicazione degli acceleratori in altre discipline
 - FEL (laser ad elettroni liberi)
 - Luce di sincrotrone anelli ad elettroni
 - Fisica medica

L'idea di Bruno Touschek: i colliders

La geniale idea fu quella di utilizzare come particelle collidenti particelle ed antiparticelle che, nella loro annichilazione, avrebbero rilasciato tutta la loro

energia per creare nuove particelle.

Collisione su targhetta fissa $\frac{E_{CM} \approx \sqrt{2E_1m_2}}{2E_1m_2}$ Esempio: $E_1 = 450 \text{ GeV}$ $E_2 = E_{02} = m_{02}c^2$ $E_{cm} = 29 \text{ GeV}$

Due fasci uguali collidenti

M. Boscolo, Masterclass LNF – 31 gennaio 2012

Radiazione di sincrotrone

Una particella carica che viaggia lungo una traiettoria curva emette fotoni, la cui energia dipende dalla massa, dall'energia della particella e dal raggio di curvatura della traiettoria Radiazione ben collimata

> Particelle in moto su un'orbita circolare quando passano all'interno di un magnete curvante emettono radiazione in direzione tangente alla loro

traiettoria

Una particella carica che viaggia lungo una traiettoria curva perde energia

 $/(E/m_{0}c^{2})$

viene compensata dalle Cavità a RF

Radiazione di Sincrotrone

U energia persa per giro

 $\frac{e^{-}}{2} \approx 10^{13}$

 $\frac{m_p}{m_p} = 1836$

 m_{e}

 $U = \frac{4\pi}{3} \frac{r_o}{(mc^2)^3} \frac{E^4}{\rho}$ Energia Massa Raggio di curvatura della traiettoria E energia della particella ρ raggio di curvatura

 La radiazione di sincrotrone emessa da protoni è stata osservata per la prima volta al Tevatron

(circonferenza L= $2\pi\rho$)

m0 massa della particella

 $U \sim 0.01 \text{ MeV}$ E = 0.51 GeVDAΦNE L = 97.58 m**e**⁺ **e**⁻ $U \sim 700 \text{ MeV}$ E = 70 GeVL = 27e+ e-LEP Km LHC U ~ 0.007 MeV E = 7000 GeV L = 27Km р р

ENERGY frontiers – e+ e-

: last circular collider ieV / beam

Limiti imposti dalla Radiazione di Sincrotrone

L'energia persa per emissione di radiazione di sincrotrone viene reintegrata mediante una **cavità a Radio Frequenza**

$$U_{MAX} = P_{MAX}^{RF}$$
$$E_{MAX} [GeV] \propto \left(\rho[m] U_{MAX}\right)^{1/4}$$

- Data una certa potenza RF si può costruire un acceleratore con energia maggiore aumentandone il raggio
- Raddoppiare l'energia a parità di potenza RF richiede un acceleratore con raggio 16 volte maggiore

QUINDI:

Per via della radiazione di sinctrotrone gli acceleratori ad alta energia (E >100 GeV)

- Anelli circolari: adroni (protoni, antiprotoni o ioni) o muoni, oppure
- acceleratori lineari

Dov'è R&D degli acceleratori per applicazioni della fisica delle alte energie?

- Acceleratori Lineari e+e- : ricerca nel campo delle cavità acceleranti, a maggior gradiente di accelerazione possibile (CLIC (Cern), ILC)
- Acceleratori **circolari**:
 - p p : LHC presente (Cern) -> limite per dimensioni
 - e+e- : pochi in funzione (tra cui DAFNE), progetti futuri SUPERKEKB (Giappone) in costruzione da KEKB, SUPERB grazie alla nuova idea del crab-waist
- Muon colliders Neutrino Factories
- Acceleratori a Plasma: il campo elettrico accelerante viene generato da onde di plasma, idea molto innovativa, ancora under test

Acceleratori nel mondo

CATEGORIA	NUMERO
Impiantazioni ioniche	7000
Altri acceleratori nell'industria	1500
Acceleratori in ricerca non- nucleare	1000
Radioterapia	5000
Produzione di isotopi per medicina	200
Adroterapia	20
Sorgenti di luce di sincrotrone	70
Ricerca nuceare e subnucleare	110
TOTALE	15000

Gli acceleratori usati per la ricerca pura sono costruiti ai limiti della tecnologia attuale e sono anch'essi ricerca tecnologica.

Accelerators in the world > 15000

Sviluppo degli Acceleratori

- Acceleratori dedicati alla fisica fondamentale sono pochi rispetto a quelli dedicati all'industria e alla medicina,
- Tuttavia le idee più innovative si hanno sugli acceleratori dedicati alla fisica fondamentale,
- è su questi che si sperimentano le tecnologie più innovative, che vengono poi applicate sugli altri

Ecco perchè sono così significativi i collisori

Evoluzione dei Collisori nel tempo

Colliders

Location	Name (type ^[a])	Max. $E_{\rm cm}$ (GeV)	Start	DR: Double storage ring
Stanford/SLAC, USA	$CBX^{[b]} (e^-e^-DR)$	1.0	1963	
	Spear (e^+e^-SR)	5.0	1972	SR: Single storage ring
	$PEP (e^+e^-SR) [5]$	30	1980	LC: Linear collider
	SLC (e^+e^-LC) [6]	100	1989	
	PEP-II (e^+e^-DR) [7]	10.6	1999 ^[d]	
Frascati,Italy	AdA (e^+e^-SR)	0.5	1962	
	Adone (e ⁺ e ⁻ SR)	3.0	1969	
	$DA\Phi NE (e^+e^-SR)$	1.0	1997 ^[d]	
Novosibirsk, Siberia	VEP-1 (e^-e^-DR)	0.26	1963	
	VEPP-2/2M (e^+e^-SR)	1.4	1974	
	VEPP-4 (e^+e^-SR)	14	1979	
Cambridge, USA	CEA Bypass (e ⁺ e ⁻ SR)	6	1971	
Orsay, France	ACO (e^+e^-SR)	1.0	1966	
	DCI ($e^{\pm}e^{\pm}DR$)	3.6	1976	
DESY, Germany	Doris (e^+e^-DR)	6.0	1974	
	Petra (e^+e^-SR)	38	1978	
	Hera (e [±] p DR) [8]	160	1992	
CERN, Europe	ISR (pp DR) [2]	63	1971	
	SppS (pp SR) [9]	630	1981	
	LEP (e^+e^-SR) [10]	190	1989	
	LHC (pp DR) [11]	14,000	2004 ^[d]	
Brookhaven, USA	RHIC (heavy ions DR) [12]	200/u ^[c]	1999 ^[d]	
	RHIC (pp DR)	500		
Cornell, USA	CESR (e^+e^-SR)	12	1979	
KEK, Japan	Tristan (e^+e^-SR) [14]	60	1986	
	KEK B (e^+e^-DR) [13]	10.6	1999 ^[d]	[Handbook of Accelerator Physics and
Beijing, China	BEPC (e^+e^-SR) [15]	3.1	1989	Engineering, Ed. A. Chao and M. Tigner,
Fermilab, USA	Tevatron (pp SR) [16]	1800	1987	World Scientific]

M. Boscolo, Masterclass LNF – 31 gennaio 2012

collider

Colliders: Alta Energia

LHC

M. Boscolo, Masterclass LNF – 31 gennaio 2012

LEP al CERN di Ginevra 1988-2001

Il collisore e⁺e⁻ a più alta energia: E_{CM}=209 GeV, Circonferenza ~ 27 Km

M. Boscolo, Masterclass LNF – 31 gennaio 2012

LHC: collisore protoni -protoni LHC è installato 100 m di profondità! costruito nel tunnel del LEP

- Quattro gigantesche caverne sotterranee ospitano rivelatori enormi
- Fascio di energia mai raggiunta: 14 TeV c.m.
 7 TeV (massima per fascio)
- Circa 40.000 ton a 1.9 K, a temperatura inferiore al freddo cosmico

LHC dipoles

Helium @ 1.9 K

Horizontal force at 8,33 T (inner and outer layer)1,7 MN/m Composition of the superconducting alloy Ni_Ti (47Wt% Ti) Maximum current with NO resistence (1,9 K e 8,33 T) 17000 A Number de strands per cable 36 Number de Ni-Ti filaments in each strand 6500 Bending radius 2803.95 m

Force on the cable: F = B * 10 * Lwith B = 8.33 TI0 = 12000 Ampere L = 15 mF = 165 tons

Il dipolo criogenico di LHC

The key element - the 1232 dipoles bend the beam around the 27 km circumference

Machine protection – the challenge Situation at 3.5 TeV (in August 2011)

Underground

Costo di LHC

Circa 6•10⁹ € costo dell'acceleratore

LHC

4 esperimenti di LHC sono guidati da 4 fisici italiani (uno di questi è P. Campana) a dimostrazione del livello dei nostri scienziati in fisica nella comunità internazionale

M. Boscolo, Masterclass LNF – 31 gennaio 2012

Frontiere della Luminosità nelle *Factories* a leptoni (e+e-)

Fabbriche a e+e-, perchè producono tante particelle

Superfactories

New colliding schemes for reducing beam-beam effects (limiting beam currents and increasing beam dimensions

Factories attuali

- BEPC II tau
- VEPP200 -2 GeV
- DAFNE PHI

KEKB – B Chiusa 30 giugno 2010 Crab-cavity SUPER-KEKB Finanziata, in Crab-waist

Schema di incrocio Schema classico Fascio tondo Crab-waist (Superb) Crab-cavity

Luminosità in funzione dell'energia

Per un aumento simile di luminosità ci vuole un'idea nuova, che cambi il modo di progettare un collider

Luminosità

è proporzionale alla densità dei fasci (numero particelle/area) e alla frequenza di collisione

$$L == f \cdot \frac{N_1 N_2}{A} \quad (\text{cm}^{-2} \text{ sec}^{-1})$$

Tanti più eventi di fisica quanto più densi i pacchetti dei fasci collidenti

 $N_{1,2}$ numero di particelle e di antiparticelle nei pacchetti 1 e 2

f frequenza

A area trasversa occupata dai due pacchetti all'IP $f_{collision} = n_{bunches} \cdot f_{revolution}$ $f_{revolution} = c/L$ M. Boscolo, Masterclass LNF - 31 gennaio 2012

Luminosità

E' definita come la quantità di eventi al secondo per sezione d'urto unitaria

gli eventi sono ad esempio l'annichilazione di materiaantimateria nel punto di collisione per un dato processo

la sezione d'urto σ di un determinato evento è proporzionale alla probabilità che l'evento avvenga si misura in cm²

Due particelle che collidono possono produrre tipi diversi di eventi, alcuni più probabili di altri

 $L\sigma$ = frequenza con cui accadono gli eventi cercati [si misura in s⁻¹]

Esempio: produzione di Φ a DAΦNE

 $\sigma(\Phi) \sim 3 \cdot 10^{-30} \text{ cm}^2$

frequenza degli eventi L σ =300 eventi/s

Quando due fasci si intersecano nel punto di interazione (IP) in un collisore succedono due cose:

- una particella interagisce con una singola particella del fascio 1. opposto producendo eventi di fisica.
- 2. una particella vede il fascio opposto come un insieme di cariche puntiformi (interazione fascio-fascio)

Le interazioni del caso 1. sono quelle che studiano i fisici sperimentali.

Le interazioni del caso 2. sono quelle che vanno ottimizzate per avere un buon *collider*.

$$L = \frac{\dot{N}_{ev}}{\sigma} = f \cdot \frac{N_1 N_2}{A}$$

Per aumentare la luminosità si può:

- 1. aumentare il numero di particelle per pacchetto
- 2. diminuire l'area occupata dai pacchetti (cioè le loro dimensioni trasverse)

Raggiunto il limite massimo di densità delle particelle in un pacchetto, come si aumenta la luminosità?

Schema di collisione del *crab waist* è una soluzione!

Idea innovativa di P. Raimondi, fisico italiano, a Frascati

Regione d'interazione: schema tradizionale

Regione d'interazione: schema tradizionale

(meter)⁼²

Limite inferiore per β_v all'IP è imposto dall'EFFETTO CLESSIDRA (hourglass effect)

the hourglass effect consists in a luminosity decrease that occurs when the bunch lengths are comparable to or larger than betax* or betay*. The decrease is due to the rapid increase of the transverse beam size along the bunch

> Tutto il fascio lungo z deve vedere la stessa β_v quindi σ_z più piccolo possibile

$$\beta_y^* \approx \sigma_z$$

 β_v dell'ordine di qualche cm $\sigma_{z} \approx cm$

Le inserzioni *low-\beta* producono solo una regione localizzata di piccola β verticale, necessaria per raggiungere alta luminosità.

Il punto di minima dimensione trasversa del fascio è all'IP

Le funzioni di β grandi nei quadrupoli defocheggianti vicino all'IP inducono:

- cromatismo verticale grande e molto negativo
- più forti sestupoli di correzione
- apertura dinamica più piccola
- vita media più corta

Crab-Waist Scheme

 σ_{7}

0,1 **B**..*

0,08

0.06

0,04

0.02

L'idea del crab waist è semplice di per sè:

grande angolo di Piwinski (LPA) 1.

Con un grande angolo di Piwinski l'area di sovrapposizione dei due fasci in collisione diventa più piccola (inoltre, gli incroci parassiti diventano trascurabili)

<u>2. β_v all'IP ~ regione di sovrapposizione</u> dei due fasci

questo permette di avere β_v all'IP più piccoli e quindi luminosità maggiore

$$\beta_y^* \ll \sigma_z$$

<u>3. due sestupoli detti di crab con fase giusta rispetto all'IP (CW)</u>

P. Raimondi, Nov. 2005/March 2006 PRL 104, 174801 (2010)

M. Boscolo, Masterclass LNF - 31 gennaio 2012

Φ factory: DA Φ NE ai LNF

Double Annular Φ or Nice Experiments

IL complesso di DAΦNE è formato da tre elementi:
(1) il LINAC;
(2) l'accumulatore;
(3) i due anelli principali.
(4) tre linee di luce di sincrotrone

Le strutture sono state completate nel 1997 e le prime collisioni sono avvenute nel marzo 1998.

DAFNE Peak Luminosity

Iuminosity optimization needs long machine tuning!

Visione più da vicino dei due anelli

Parameter list

		Base Line		Low Emittance		High Current		τ/charm	
Parameter	Units	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e-)	HER (e+)	LER (e
LUMINOSITY (10 ³⁶)	cm ⁻² s ⁻¹		1		1		1	1	I
Energy	GeV	6,7	4,18	6,7	4,18	6,7	4,18	2,58	1,61
Circumference	m	1195		1195		1195		1195	
X-Angle (full)	mrad	60		60		60		60	
Piwinski angle	rad	20,11	17,25	29,42	23,91	13,12	10,67	8,00	6,50
β _x @ IP	cm	2,6	3,2	2,6	3,2	5,06	6,22	6,76	8,32
β _y @IP	cm	0,0253	0,0205	0,0179	0,0145	0,0292	0,0237	0,0658	0,0533
Coupling (full current)	%	0,25	0,25	0,25	0,25	0,5	0,5	0,25	0,25
ϵ_x (without IBS)	nm	2,00	1,7	1,00	0,91	1,97	1,82	1,97	1,82
ε _x (with IBS)	nm	2,14	2,363	1,00	1,23	2,00	2,46	5,20	6,4
εγ	pm	5,35	5,9075	2,5	3,075	10	12,3	13	16
σ _x @ IP	μm	7,459	8,696	5,099	6,274	10,060	12,370	18,749	23,076
σ _v @ IP	μm	0,037	0,035	0,021	0,021	0,054	0,054	0,092	0,092
Σ_{x}	μm	11,457		8,085		15,944		29,732	
Σ _y	μm	0,051		0,030		0,076		0,131	
σ∟ (0 current)	mm	4,69	4,29	4,73	4,34	4,03	3,65	4,75	4,36
σ_{L} (full current)	mm	5	5	5	5	4,4	4,4	5	5
Beam current	mA	1892	2447	1460	1888	3094	4000	1365	1766
Buckets distance	#	2		2		1		1	
Buckets distance	ns	4,20		4,20		2,10		2,10	
lon gap	%	2		2		2		2	
RF frequency	MHz	476		476		476		476	
Harmonic number		1998		1998		1998		1998	
Number of bunches		442		442		884		884	
N. Particle/bunch (10 ¹⁰)		5,08	6,56	3,92	5,06	4,15	5,36	1,83	2,37
Tune shift x		0,0026	0,0040	0,0020	0,0031	0,0053	0,0081	0,0063	0,0096
Tune shift y		0,1089	0,1033	0,0980	0,0981	0,0752	0,0755	0,1000	0,1001
Long. damping time	msec	13	18,0	13,4	20,3	13,4	20,3	26,8	40,6
Energy Loss/turn	MeV	2,11	0,865	2,11	0,865	2,11	0,865	0,4	0,166
$\sigma_{\rm E}$ (zero current)	δE/E	6,10E-04	7,00E-04	6,43E-04	7,34E-04	6,43E-04	7,34E-04	6,94E-04	7,34E-0
$\sigma_{\rm E}$ (with IBS)	δE/E	6,28E-04 7,91E-04		5.005.04		5.005.04			
CM σ _E	δΕ/Ε	4,75E-04		5,00E-04		5,00E-04		5,26E-04	
Total lifetime	min	4,23 4,48 M B		3,05 3,00 oscolo, Masterclas		5 LNF -31 gennai		2012	6,79
I otal RF Power	MW	16	,38	12	,37	28	,83	2,	81

Baseline + other 2 options: •Lower y-emittance •Higher currents (twice bunches)

Baseline: •Higher emittance due to IBS •Asymmetric beam currents

RF power includes SR and HOM

Tau/charm threshold

Regione di interazione

M. Boscolo, Masterclass LNF - 31 gennaio 2012

Futuro : e+ e- Linear colliders

Sfida tecnologica: Cavità ad alto gradiente

Negli acceleratori lineari non c'è radiazione di sincrotrone: per andare ad altissime energie il futuro è qui. Ricerca tecnologica: capacità di accelerare più velocemente possibile, cioè nel minor spazio possibile

e+/e- Linear Colliders progetti per il futuro: CLIC and ILC

http://clic-study.web.cern.ch/CLIC-Study/ http://www.linearcollider.org/cms/

CLIC

ILC

- Dual beam acceleration technology
- R&D at CERN ~ 20 y
- Normal conducting cavities 12 GHz, 100 MV/m
- Maximum energy 3 TeV cm
 Phase I at 0.5 TeV
- International collaboration around CTF3

- Well extablished SC rf technology (TESLA, FLASH, XFEL...)
- Decision in 2004
- Rf cavities ~ TESLA like
 1.3 GHz, 31.5 MV/m
- Maximum energy 1 TeV cm
 Phase I at 0.5 TeV
- GDE (Global Design Effort)
 International collaboration
- Site independent

Luminosity Frontiers in future Linear Colliders

SFIDE tecnologiche

Low emittance-high current damping rings : e-cloud in e+ ring, intrabeam scattering

Low emittance beams production and transport

Beam stability and alignment precision

Esperienze e test di fattibilità

Low emittance synchrotron light sources
High currents factories
CESRc tests, LHC injectors

XFELs

XFELs, ATF2, CTF2

Esempi di applicazioni degli acceleratori di particelle

- Acceleratori di elettroni come sorgenti per la produzione di radiazione di sincrotrone, dall'infrarosso ai raggi X, utilizzata in moltissime applicazioni, tra cui: scienza dei materiali, fisica dello stato solido, microlitografia, biochimica, microscopia.
- Acceleratori per applicazioni mediche: fasci di ioni o protoni per adroterapia, acceleratori di elettroni come sorgenti di raggi X.
- Fasci di ioni per riscaldamento dei plasmi nei reattori a fusione.
- Acceleratori per sterilizzazione dei cibi e dei contenitori.
- Impiantazione di ioni in semiconduttori.

ELETTRA a Trieste: anello di accumulazione per luce di sincrotrone

Il parametro che determina la qualità di un fascio di elettroni per questo tipo di macchine è la **BRILLANZA**, concetto molto simile alla luminosità: Quanto più denso il denso di fascio di elettroni circolanti, tanto più *pulito* il fascio di luce di sincrtorone emesso nei magneti curvanti

from a few to several tens of KeV with spectral brightness of up to 10¹⁹photons/s/mm²/mrad²/0.1%bw

http://www.elettra.trieste.it/science/highlights/index.html

M. Boscolo, Masterclass LNF – 31 gennaio 2012

Laser ad elettroni liberi (FEL-SASE)

I Laser ad Elettroni Liberi sono potenti sorgenti di radiazione elettromagnetica coerente (microonde, UV, raggi X) con alta potenza di picco e alta brillanza (ordini di grandezza superiori agli anelli di luce di sincrotrone)

M. Boscolo, Masterclass LNF - 31 gennaio 2012

Acceleratori Lineari e⁻ per i *Free Electron Lasers* (FEL)

 PRINCIPIO del FEL-SASE (=Self Amplified Spontaneous Emission) : Un linac ad e- accelera pacchetti di elettroni di alta qualità (brillanza) che entrando nell'ondulatore generano radiazione coerente, con un'amplificazione esponenziale

M. Boscolo, Masterclass LNF - 31 gennaio 2012

The SPARC Linac

SPARC a Frascati ai LNF

- FEL
- Produzione radiazione THz
- Accelerazione a plasma

Esempio di schema sperimentale a SPARC

Strada verso un acceleratore lineare basato sull'accelerazione a Plasma (PWFA)

Fase di studio di fattiblità

Huge advances in beam dynamics simulations Example : PIC code for PWFA

CNAO: Centro Nazionale Adroterapia Oncologica a Pavia

M. Boscolo, Masterclass LNF - 31 gennaio 2012

Adroterapia

Gli Adroni sono nuclei di atomi che, portati ad alta energia da una macchina acceleratrice, sono lanciati come proiettili in grado di danneggiare tessuti malati in massima parte alla fine del loro corso nel corpo del paziente, in corrispondenza del tumore

Un fascio di adroni carico rilascia la maggior parte della sua energia distruttiva) sul bersaglio. La dose al tumore può essere quindi molto elevata mentre i tessuti sani vengono risparmiati.

Conclusioni

- Colliders e concetto di luminosità per fisica fondamentale
 - Alta energia : LHC
 - Alta luminosità : DAFNE
- Anelli per luce di sincrotrone: ELETTRA
- Linac per Free Electron Laser e accelerazione a plasma: SPARC
- Anelli per adroterapia: CNAO

Spero di avervi trasmesso l'idea che la fisica degli acceleratori è un campo fertile con applicazioni molto varie ed interessanti, oltre che un campo complesso che richiede sempre nuove idee e soluzioni tecnologiche per nuove scoperte...

Diagramma dell'energia degli acceleratori dal 1930 al 2010

Bibliografia

 CERN Accelerator School: Basic course on accelerator optics Yellow Report CERN 94-01 Vol.I

http://cdsweb.cern.ch/record/235242?In=it

- P.J.Bryant, "A Brief History and review of accelerators"
- J. Rossbach, P. Schmuser, "Basic Course on accelerator optics"
- J. Le Duff, "Dynamics and Acceleration in Linear Structures"
- J. Le Duff, "Longitudinal Beam Dynamics and in Circular Accelerators"
- H. Wiedemann, Particle Accelerator Physics, Springer-Verlag
- M. Sands, The Physics of Electron Storage Rings: An Introduction, <u>http://ccdb4fs.kek.jp/cgi-bin/img_index?197708303</u>, SLAC-121 (1970)
- C. Biscari, Accelerators R&D, PoS EPS-HEP2009:019 (2009)
GRAZIE PER L'ATTENZIONE !

Back-up slides

M. Boscolo, Masterclass LNF – 31 gennaio 2012

Beauty-Factory: Stanford Linear Accelerator Center

Due anelli di accumulazione di e⁺/e⁻ uno sopra l' altro.

$E_{CM} \sim 10 \text{ GeV}$

L'annichilazione di e+/eproduce quarks-b, il cui decadimento è di interesse per i fisici sperimentali.

PEP-II Records

Peak Luminosity

12.069×10³³ cm⁻²sec⁻¹

August 16, 2006

Last update:

March 1, 2008

Integration records of delivered luminosity

	Best shift	339.0 pb ⁻¹	Aug 16, 2006
	Best 3 shifts in a row	910.7 pb ⁻¹	Jul 2-3, 2006
	Best day	858.4 pb ⁻¹	Aug 19, 2007
	Best 7 days (0:00 to 24:00)	5.411 fb ⁻¹	Aug 14-Aug 20, 2007
	Best week (Sun 0:00 to Sat 24:00)	5.13 7 fb ⁻¹	Aug 12-Aug 18, 2007
	Peak HER current	2069 mA	Feb 29, 2008
	Peak LER current	3026 mA	Sep 1, 2007
	Best 30 days	19.776 fb^{-1}	Aug 5 – Sep 3, 2007
	Best month	19.732 fb ⁻¹	August 2007
M. Boscolo, Mastercla	ass LNFtm Bill gennaio 2012	536 fb ⁻¹	

2008 Aprile spenta per sempre

KEKB → SUPERKEKB

Machine Parameters of the KEKB (Nov. 28 2007)

	LER	HER	
Circumference	3016		m
RF Frequency	508.88		MHz
Horizontal Emittance	18	24	nm
Beam current	1582	839	mA
Number of bunches	1584		
Bunch current	0.998	0.530	mA
Bunch spacing	2.1		m
Bunch trains	1		
Total RF volatage Vc	8.0	13.0	MV
Synchrotron tune v_s	-0.0246	-0.0204	
Betatron tune v_x / v_y	45.506/43.570	44.511/41.590	
beta's at IP $oldsymbol{eta}_x^*$ / $oldsymbol{eta}_y^*$	90/0.59	90/0.59	cm
momentum compaction α	3.31 x 10 ⁻⁴	3.38 x 10 ⁻⁴	
Estimated vertical beam size at IP $\sigma_{_y}^{*}$	1.1	1.1	μ m
beam-beam parameters ξ_x / ξ_y	0.089/0.093	0.098/0.088	
Beam lifetime	150@1600	1 32@839	min.@mA
Luminosity (Belle Csl)	14.60		10 ³³ /cm ² /sec
Luminosity records perziay / 7days/ 30days	1.232/7.809/30.21		/fb

IL TEVATRON AL FERMILAB- Chicago

Il collisore pp a più alta energia: $2 \text{ TeV} = 2 \cdot 10^{12} \text{ eV}$

M. Boscolo, Masterclass LNF – 31 gennaio 2012

Interazione di Beam-Beam

Quando due fasci si intersecano nel punto di interazione (IP) in un collisore succedono due cose:

- 1. una particella interagisce con una singola particella del fascio opposto producendo **eventi di fisica**.
- 2. una particella vede il fascio opposto come un insieme di cariche puntiformi (interazione fascio-fascio)

Ogni particella di un fascio risente dei campi e.m. del fascio opposto ad ogni incrocio, risente della forza di beam-beam, forza altamente **NON lineare**, che si puo' linearizzare per piccole deviazioni dall'IP

Ottimizzare la luminosità di un collider significa minimizzare la perturbazione di beam-beam

quindi la frequenza di betatrone di ogni particella che attraversa il fascio opposto nel punto di interazione (IP) viene perturbata

I *tunes nominali (working point)* vengono scelti in modo che in collisione il tune totale delle diverse particelle del fascio (Qy+ Δ Qy) non finisca su una risonanza