Adolfo Esposito

Tecniche diagnostiche non distruttive applicate ai Beni Culturali

Introduzione

Ogni manufatto, segnatamente di interesse artistico ma non solo, contiene in se' la storia del manufatto stesso, ivi compresa informazioni sulla sua produzione, sul suo uso e sul suo stato di conservazione.

Compito degli storici dell'arte, degli archeologi, dei restauratori e di quant'altri coinvolti nel campo dello studio e della salvaguardia dei Beni Culturali, e' quello di mettere in evidenza tutta la sua storia, ove possibile, rispondendo ai quesiti:

Dove? Quando? Da chi? Con che cosa?

un manufatto viene prodotto Con quale tecnica?

Le valutazioni artistiche di un esperto del settore sono in grado di leggere a partire dalla sola analisi visiva dell'opera d'arte o del manufatto, con il supporto sempre necessario di valutazioni storico artistiche, la mano e/o la specificita' di un autore e della sua bottega.

L'occhio dell'esperto non e' in grado pero' di andare oltre la superficie, dove peraltro e' nascosta una parte non meno importante e sostanziosa informazione.

Sotto la superficie e/o nella superficie e' possibile mettere in evidenza tutto cio' che non e' visibile ad occhio nudo (composizione dei materiali, tecnologie di preparazione, tecnologie di cottura, ripensamenti, riferimenti, riutilizzo etc.)

Compito fondamentale delle applicazione della fisica nei Beni Culturali consiste in definitiva nello svelare questa storia nascosta.

Generalita' sulle tecniche

Le tecniche analitiche utilizzabili sono rivolte principalmente all'ottenimento di informazioni necessarie agli studi nei campi di seguito elencati, di certo non completamente esaustivi

Autenticita'

Datazione diretta

Datazione indiretta

Analisi di provenienza e collocazione storico artistica

Valutazione dello stato di conservazione

Scelta della tecnica piu' appropriata per il restauro

In linea di massima ogni tecnica nata per lo studio dei materiali puo' essere applicata in maniera soddisfacente nel campo dell'archeometria purche' vengano rispettate le esigenze di seguito elencate.

Non distruttivita'

Non invasivita'

Adattabilita' a varie forme e materiali

Accuratezza quantitativa

Rapidita' di esecuzione delle misure

Limite di rivelazione piccolo

Tecniche non distruttive

Le tecniche non distruttive sono il complesso di indagini diagnostiche, esami, rilievi condotti impiegando metodi che non alterano il materiale, non ne richiedono la distruzione o tanto meno il prelievo di campioni

Sono in genere tutti i metodi indiretti. Essi si basano sull'uso della radiazione elettromagnetica in tutto il suo spettro di energia

Tecniche non invasive

Le tecniche non invasive sono il complesso di indagini diagnostiche, esami, rilievi condotti su piccoli campioni prelevati dal manufatto

Sono in genere tutti quei metodi indiretti utilizzabili in genere in laboratorio a mezzo di strumentazione sofisticate altrimenti intrasportabile e/o quei metodi che comunque prevedono un trattamento del campione prima della misura

Il campo di indagine e' talmente vasto da non poterlo compendiare in un tempo ristretto. E' appena il caso di ricordare

I materiali lapidei

I materiali fittili

Gli intonaci e le murature

I materiali metallici

I materiali lignei

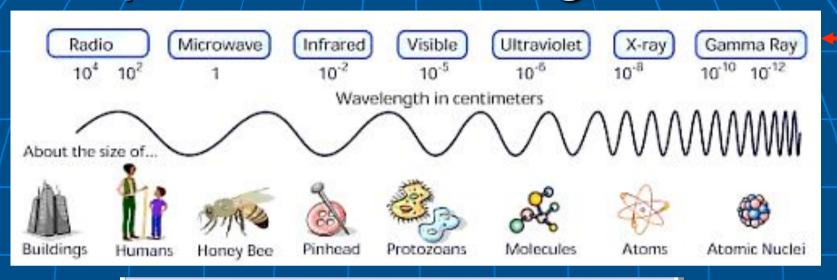
Le pergamene

I vetri

I dipinti su tela

I dipinti su tavola

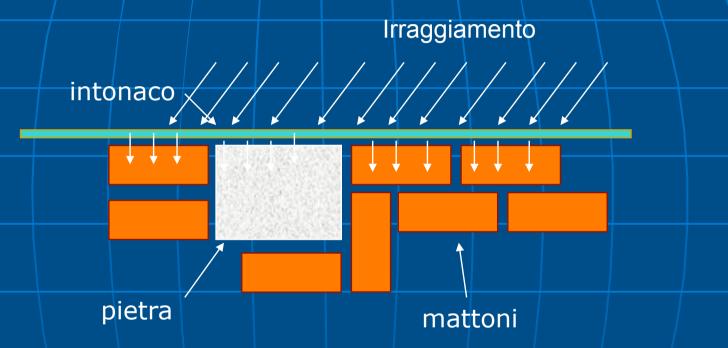
Gli affreschi


Applicazione della radiazione elettromagnetica

Analisi non distruttive

Termografia	Radiografia
Olografia	Fluorescenza X
Ultrasuoni	Tomografia
	Gammagrafia

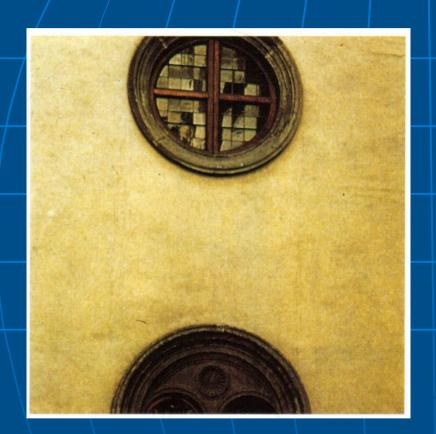
Tecniche fotografiche speciali Riflettografia


Spettro Elettromagnetico

Region	Wavelength (Angstroms)	Wavelength (centimeters)	Frequency (Hz)	Energy (eV)
Radio	> 109	> 10	< 3 x 10 ⁹	< 10 ⁻⁵
Microwave	10 ⁹ - 10 ⁶	10 - 0.01	3 x 10 ⁹ - 3 x 10 ¹²	10 ⁻⁵ - 0.01
Infrared	10 ⁶ - 7000	0.01 - 7 x 10 ⁻⁵	3×10^{12} - 4.3×10^{14}	0.01 - 2
Visible	7000 - 4000	7 x 10 ⁻⁵ - 4 x 10 ⁻⁵	$4.3 \times 10^{14} - 7.5 \times 10^{14}$	2 - 3
Ultraviolet	4000 - 10	4 x 10 ⁻⁵ - 10 ⁻⁷	$7.5 \times 10^{14} - 3 \times 10^{17}$	3 - 10 ³
X-Rays	10 - 0.1	10 ⁻⁷ - 10 ⁻⁹	3 x 10 ¹⁷ - 3 x 10 ¹⁹	10 ³ - 10 ⁵
Gamma Rays	< 0.1	< 10 ⁻⁹	> 3 x 10 ¹⁹	> 10 ⁵

Raggi x di alta energia

Termografia

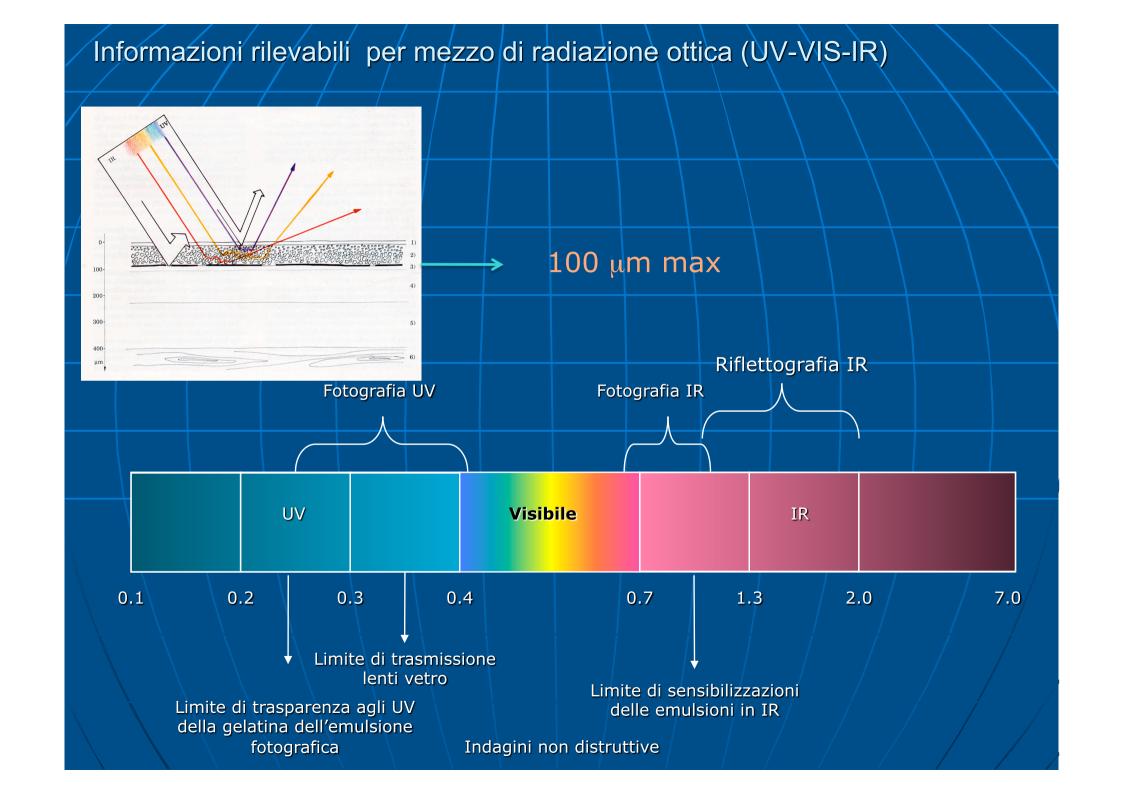


Misura Attiva: riscaldamento solare - valutazione superficiale di pochi cm Misura Passiva: riscaldamento artificiale - valutazione in profondità fino a 10- 20 cm

Informazioni ottenibili

- Aperture tamponate (all'interno ed all'esterno)
- > Particolari architettonici ed elementi lapidei inglobati nelle pareti
- Canne fumarie accecate
- > Ammorsature tra murature diverse
- Edifici inglobati in costruzioni posteriori
- Armature di volte lignee intonacate
- Posizionamento di elementi strutturali (archi di scarico, pilastri in mattoni, architravature,..)
- Strutture in cemento armato presente in facciata
- Canalizzazione di impianti idrosanitari in funzione
- Mappe delle fughe termiche
- > Presenza di umidità (o zone di umidità) nelle murature
- > Presenza di reti fognarie sottostanti zone asfaltate e lastricate
- Presenza di distacchi

Strutture sottostanti

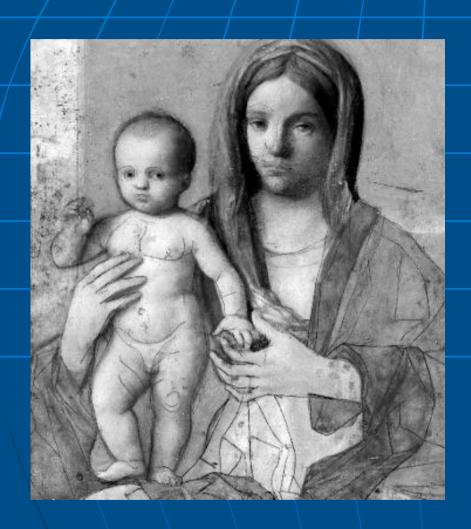

Palazzo Vecchio Firenze

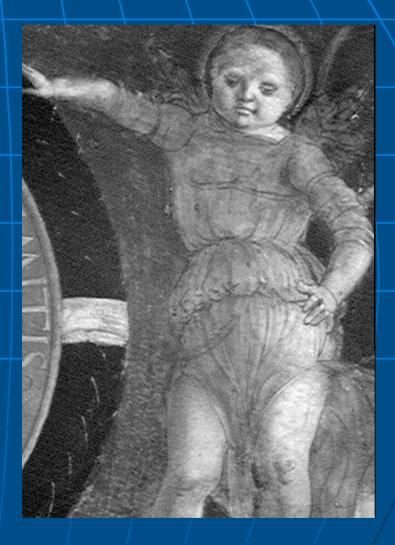
Indagini con ultrasuoni Onde Acustiche Ultrasoniche Indagini su Frequenza 16-20·10³ Hz >20·10³ Hz ✓ Materiale lapideo e intonaci

- ✓ Metalli
- ✓ /Legno

Informazioni ottenibili

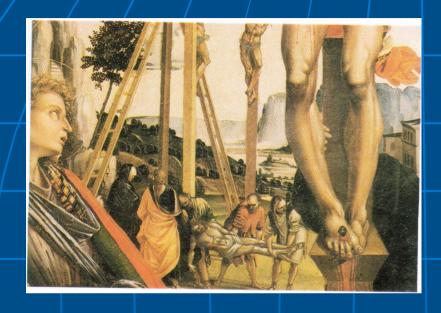
- Rilevare lo stato di degrado nella muratura
- Qualificare la morfologia della sezione muraria
- Rilevare in profondità l'estensione delle fessure
- Verifica dell'efficacia degli interventi di consolidamento mediante le iniezioni di malta o resina
- Spessori di corrosione
- Spessori di un bronzo di fusione
- Individuazione di fratture interne
- Caratterizzazione del legno
- * Differenziazione della zona di alburno dalla zona durame
- * Determinazione del contenuto e gradiente di umidità

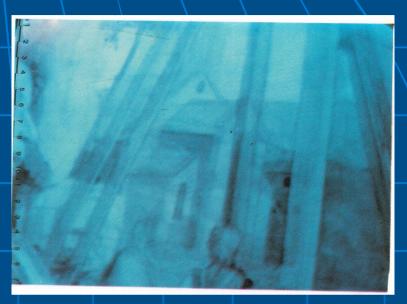

Informazione


Si penetra fino al livello dell'imprimitura (sotto lo strato pittorico)

- Disegno preparatorio
- Pentimenti
- Pitture precedenti
- Restauri precedenti
- Pellicola protettiva
- > Pigmenti

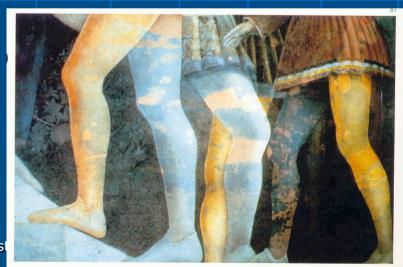
Disegno preparatorio


(riflettografia IR)



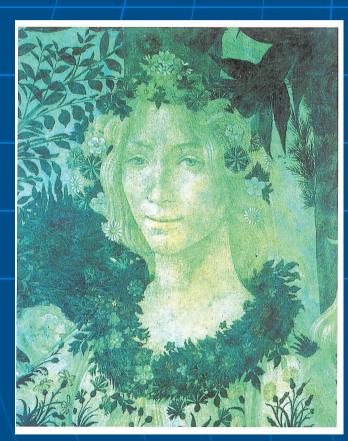
Riciclo di tele (riflettografia IR)

Crocefissione Luca Signorelli

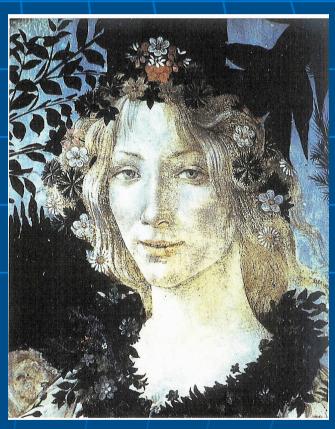


Restauri precedenti (fotografia IR colori)

Camera degli sposi Mantegna



ini non dist

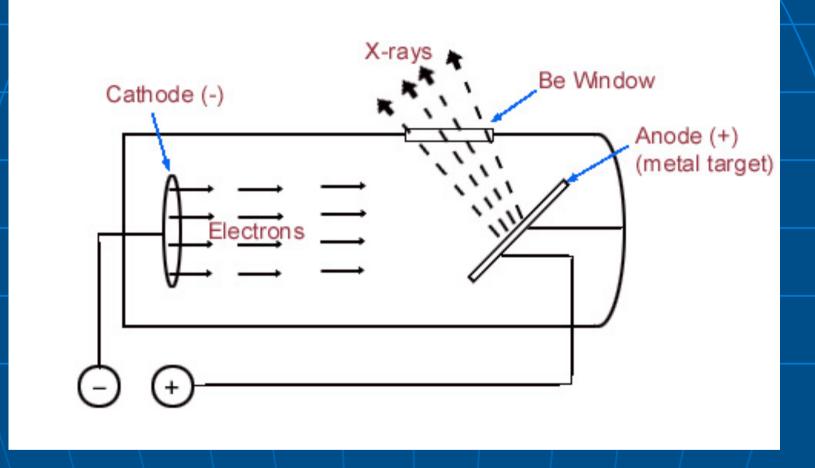


Invecchiamento pellicola protettiva (Fluorescenza UV prima e dopo il restauro)

La Primavera Botticelli

PRIMA

DOPO


Analisi non distruttiva che impiega radiazione X

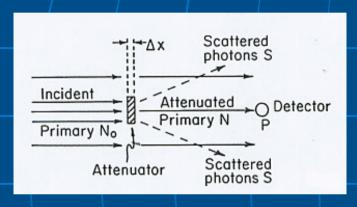
Radiografia

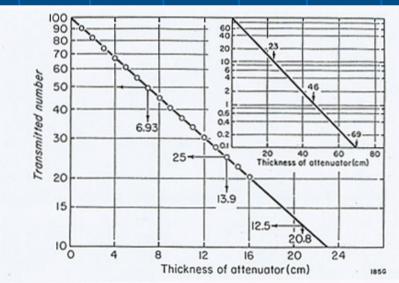
Tomografia

Fluorescenza

Produzione di RX

Tensione: 1- 60 kV


Corrente: qualche centinaio di μΑ


RADIOGRAFIA

$$\Delta N = -\mu N \Delta x$$

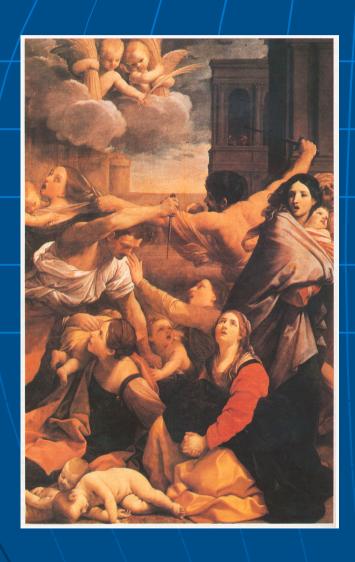
 $N = N_o e^{-\mu x}$

Legge di penetrazione dei Rx:

- N : Intensità della radiazione trasmessa
- $N_0 = 0$: Intensità della radiazione incidente
- x: Spessore del campione
- μ : Coefficiente di assorbimento lineare caratteristico del materiale

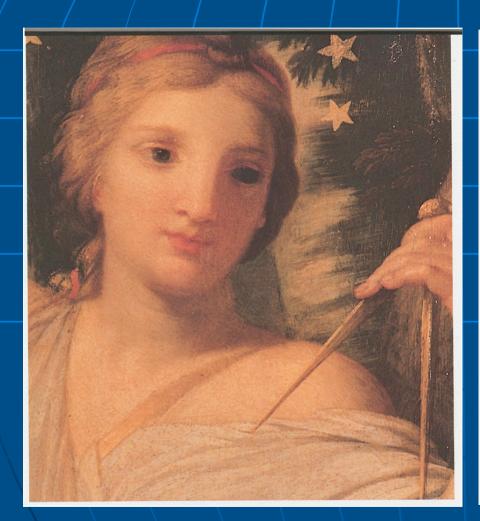
Penetrazione di diversi centimetri

$$\mu = 0.1 \text{ cm}^{-1}$$

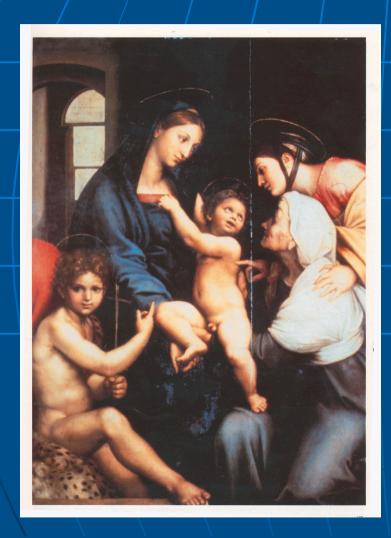

Applicazioni (radiografia)

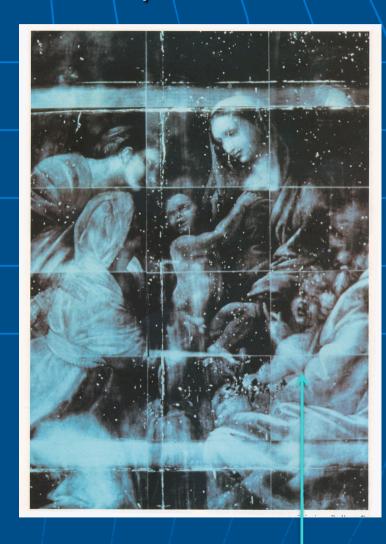
- Dipinti
- Bronzi
- Manufatti lignei e ceramici
- Mummie
- Pergamene
- Francobolli e cartone

Informazione sui DIPINTI (radiografia)

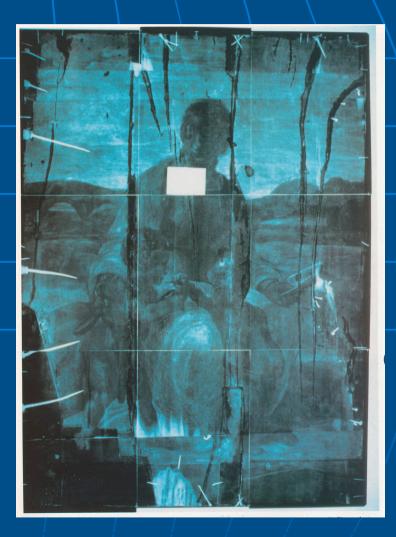

- Convalida autenticità
- Individuazione di pentimenti e sovrapposizioni
- Analisi del supporto (tela, legno)
- Analisi dell'imprimitura
- Analisi della pellicola pittorica
- Analisi dello stato di conservazione
- Restauri precedenti
- Tecnica dell'artista

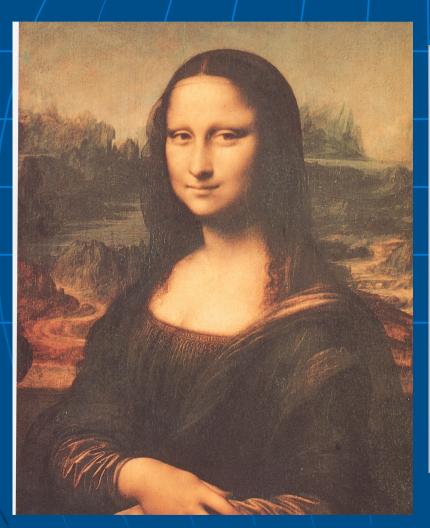
Pentimenti Guido Reni – La Strage degli Innocenti


Pentimenti Le Sueur Eustache – musa Urania (particolare)



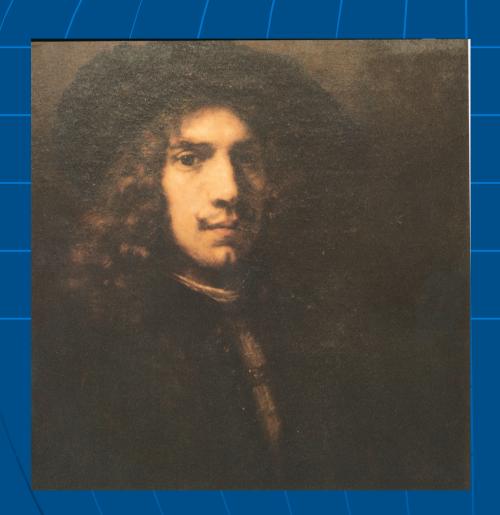
Restauri precedenti – pentimenti


Raffaello – Madonna dell'Impannata



Analisi sfondo Raffaello - Madonna del Cardellino

Analisi dei pigmenti Leonardo Da Vinci – La Gioconda



Assorbimento RX di vari pigmenti

Colore	Denominazione Commerciale	Assorbimento ai Raggi
Bianco	Bianco d'argento	molto alto
	Bianco di piombo	molto alto
	Bianco di zinco	alto
	Bianco di China	alto
	Bianco di calce	medio
	Giallo di cromo:	molto alto
	chiaro, scuro, arancio	monto unto
	Giallo di cadmio:	alto
	chiaro, medio, scuro, arancio	alto
	Giallo di zinco Giallo aurora	alto
Giallo e Arancio		atto
Grano e Araneio	Ocra gialla, Terra di Siena naturale	medio-alto
	Giallo di Napoli	molto alto
	Massicott	molto alto
	Giallo di Marte	medio
	Lacca gialla di guado	basso
	Rosso di Saturno o minio	molto alto
	Vermiglione o cinabro	molto alto
	Rosso di Venezia	medio
Rosso	Lacca di carminio	basso
	Lacca di garanza	basso
	Ocra rossa	medio-alto
	Bruno di Firenze	alto
	Bruno di Marte	medio
	Bruno di Prussia	mědio
Bruno	Seppia	basso
	Bistro, fuliggine	basso
	Bitume, asfalto	basso
	Terra di Siena bruciata	. medio-alto
	Bleu ceruleo	alto
Azzurro	Bleu di cobalto	medio
	Oltremare chiaro	medio
	Bleu di Prussia	medio-alto
	Indaco	basso
Violetto	Violetto di cobalto	medio
	Violetto di Marte	medio-alto
	Violetto minerale	medio
	Verde di Verona	alto
Vanda	Verde di cromo	medio
Verde	Verde di cobalto	alto
	Lacca verde	basso
	Nero avorio	medio
	Nero di ferro	medio-alto
Grigio e Nero	Nero vite	basso
	Nero fumo di lampada	basso
	Nero di carbone	basso
Tutti i Colori	Acrilici	basso

Riutilizzo tela Rembrandt – Ritratto di giovane uomo Titus

Informazione sui BRONZI

(radiografia)

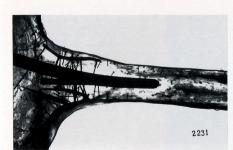
- Sezioni originarie
- Tasselli originari
- Elementi aggiunti per fusione successiva
- Linee di giunzione
- Saldature
- Chiodi distanziatori
- Attacchi dei canali di colata
- Armature d'anima
- Ribattini, viti
- Inserti, riempimenti di lacune e lesioni con il metallo fuso

Informazioni sui MANUFATTI LIGNEI

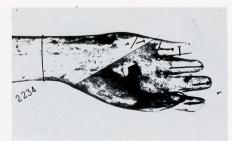
(radiografia)

- Integrità del pezzo
- Stato di conservazione del legno
- Individuazione di restauri precedenti
- Analisi dei chiodi

Radiografia manufatti lignei


Cristo – Chiesa di Santa Maria Assunta Bagno di Romagna

L'analisi preliminare per mezzo dei RX ha rilevato: un notevole danno causato dai tarli, le zone precedentemente restaurate.


Il braccio è sostenuto da un supporto di ferro. Sono stati inseriti molti chiodi per riparare la rottura tra la spalla e l'ascella, sotto l'ascella è visibile un restauro radiopaco.

Nella mano sono visibili chiodi inseriti in epoca recente. Il pollice è stato rimodellato.

X-ray of the left arm, showing the iron brace supporting the limb, and the numerous nails. A radio-opaque repair is visible in the underarm area.

X-ray of the right hand. The woodworm damage is evident, as is the remodelling of the hand, especially the thumb. There are also clear signs of the use of a rasp.

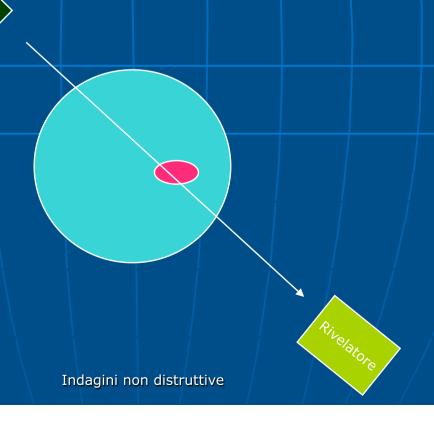
Informazioni sulle *PERGAMENE* (radiografia)

 Si rivela lo scritto antico sottostante eroso dalla pomice

Informazioni sui *FRANCOBOLLI* (radiografia)

- Tipo di inchiostro
- Struttura della carta
- Sistema di stampa
- Riconoscimento dei falsi

Limiti della RADIOGRAFIA


- Mancanza di dettaglio
- Risoluzione limitata

TOMOGRAFIA

Immagine 3D in grado di fornire informazioni sulla distribuzione di densità all'interno dell'oggetto

TOMOGRAFIA: Misura

- Un fascio di RX attraversa una sezione dell'oggetto.
- La stessa sezione successivamente viene ruotata di piccoli angoli ed attraversata ancora dagli stessi RX.
- In seguito ad una rotazione di 360° tutta la sezione sarà stata attraversata dai RX.

$$\Delta N = -\mu N \Delta x$$

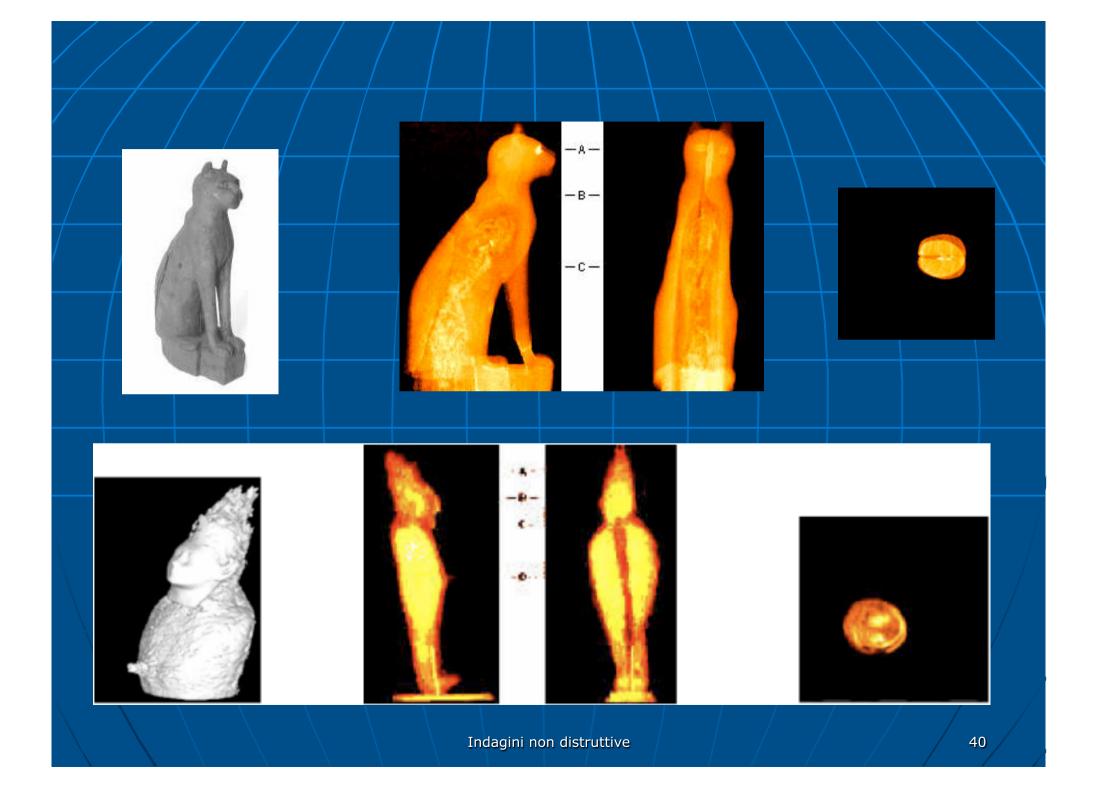
$$N = N_o e^{-\mu x}$$

 μ e' sempre funzione di ρ ,Z ed E

$$N = N_o e^{-\mu(\rho, Z, E)x}$$

Per un materiale omogeneo e' semplice ricavare il coefficiente di attenuazione lineare μ

Se l'assorbitore non e' omogeneo, allora μ e' una funzione di ρ e di z che dipende dalla distribuzione dei vari materiali nel manufatto.


Tomografia: Applicazioni

- Statue di grandi e piccole dimensioni di bronzo o pietra
- Manufatti lignei e ceramici
- Mummie
- Materiale biologico
- Carta pesta

Tomografia: Informazioni

- Eseguendo le misure per sezioni diverse, si ottiene il profilo esatto dell'oggetto nei toni di grigio o a colori.
- Si può risalire alla sua composizione interna:

Individuando vuoti, cricche, fratture Spessori di lega nelle varie parti Individuazione di zone restaurate

Tomografia: Caratteristiche

- La qualità dell'immagine dipende:
 - ✓ Dalla risoluzione geometrica: 20-30 µm (microtomografo) a 1 mm (macrotomografo)
 - ✓ Dalla risoluzione dei contrasti
 - ✓ Dal rumore (incertezza sul segnale registrato)
- L'uso dei RX è inadeguato per spessori:
 - ✓ >1,5 cm Metalli
 - ✓ >20 cm Marmo, materiale lapideo

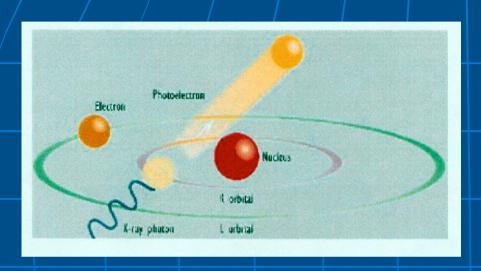
Per spessori superiori si devono usare i raggi x di alta energia

Fluorescenza di raggi X

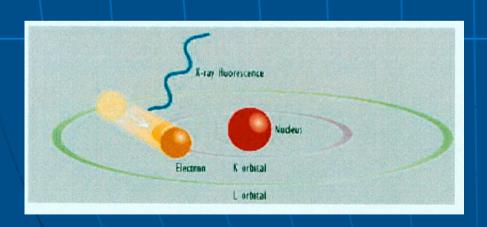
Nelle analisi di fluorescenza di raggi X il manufatto e' sottoposto a un flusso di fotoni in genere raggi X.

Se un fotone comunque prodotto ha energia sufficientemente elevata esso puo' estrarre uno degli elettroni degli orbitali interni di un atomo degli elementi chimici presenti nel manufatto, lasciando l'atomo in uno stato eccitato.

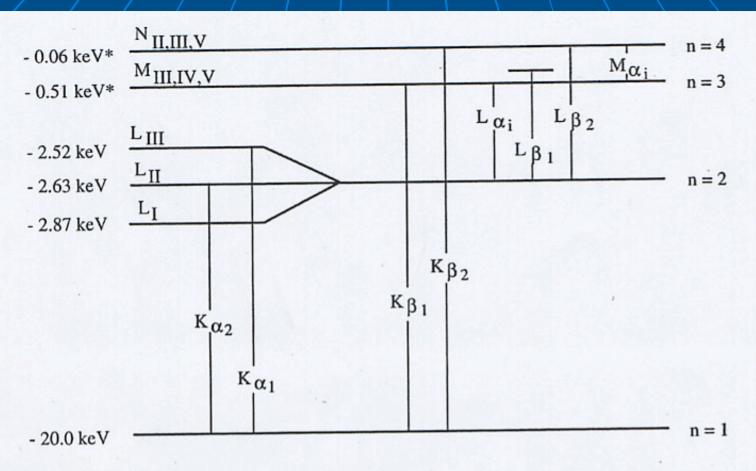
La diseccitazione e' in genere immediata e avviene mediante il salto degli elettroni dalle orbite esterne verso le orbite interne


I salti sono accompagnati dalla emissione di raggi X corrispondenti alla differenza fra il livello di partenza e di arrivo dell'elettrone dell'atomo.

Detti livelli sono caratteristici solo e soltanto di quella specie fisica.


Indagini non distruttive

FLUORESCENZA X


(XRF)

Un fascio di RX che investe un campione, trasferisce una parte della sua energia agli e delle orbite più interne in quantità note e caratteristiche dell'atomo a cui appartengono, producendo l'espulsione di un e (effetto fotoelettrico)

Nell'atomo eccitato si induce una transizione elettronica con conseguente emissione di radiazione RX di energia ed intensità legate all'abbondanza ed al tipo di elemento presente nel campione investito.

* Maximum energy for the shell; for subshell energy levels see Appendices C and D.

Emission of characteristic x rays from a Mo target due to electron vacancies in various shells followed by a higher-energy electron giving up energy to fill a particular shell vacancy.

Element	Kα ₁	Ka ₂	$K\beta_1$	La ₁	$L\alpha_2$	Lβ ₁	L _{β2}	$L\gamma_1$
3 Li	0.0543	515						
4 Be	0.1085							
5 B	0.1833							
6C	0.277							
7 N	0.3924							
80	0.5249							
9 F	0.6768							
10 Ne	0.8486	0.8486						
11 Na	1.04098	1.04098	1.0711					
12 Mg	1.25360	1.25360	1.3022					
13 Al	1.48670	1.48627	1.55745					
14 Si	1.73998	1.73938	1.83594					
15 P	2.0137	2.0127	2.1391					
16 S	2.30784	2.30664	2.46404					
17 CI	2.62239	2.62078	2.8156					
18 Ar	2.95770	2.95563	3.1905					
19 K	3.3138	3.3111	3.5896					
20 Ca	3.69168	3.68809	4.0127	0.3413	0.3413	0.3449		
21 Sc	4.0906	4.0861	4.4605	0.3954	0.3954	0.3996		

Element	Kα ₁	Ka ₂	Κβ ₁	$L\alpha_1$	La ₂	$L\beta_1$	Lβ ₂	$L\gamma_1$
63 Eu	41.5422	40.9019	47.0379	5.8457	5.8166	6.4564	6.8432	7.480
64 Gd	42.9962	42.3089	48.697	6.0572	6.0250	6.7132	7.1028	7.785
65 Tb	44.4816	43.7441	50.382	6.2728	6.2380	6.978	7.3667	8.102
66 Dy	45.9984	45.2078	52.119	6.4952	6.4577	7.2477	7.6357	8.418
67 Ho	47.5467	46.6997	53.877	6.7198	6.6795	7.5253	7.911	8.747
68 Er	49.1277	48.2211	55.681	6.9487	6.9050	7.8109	8.1890	9.089
69 Tm	50.7416	49.7726	57.517	7.1799	7.1331	8.101	8.468	9.426
70 Yb	52.3889	51.3540	59.37	7.4156	7.3673	8.4018	8.7588	9.780
71 Lu	54.0698	52.9650	61.283	7.6555	7.6049	8.7090	9.0489	10.143
72 Hf	55.7902	54.6114	63.234	7.8990	7.8446	9.0227	9.3473	10.515
73 Ta	57.532	56.277	65.223	8.1461	8.0879	9.3431	9.6518	10.895
74 W	59.31824	57.9817	67.2443	8.3976	8.3352	9.67235	9.9615	11.285
75 Re	61.1403	59.7179	69.310	8.6525	8.5862	10.0100	10.2752	11.685
76 Os	63.0005	61.4867	71.413	8.9117	8.8410	10.3553	10.5985	12.095
77 Ir	64.8956	63.2867	73.5608	9.1751	9.0995	10.7083	10.9203	12.512
78 Pt	66.832	65.112	75.748	9.4423	9.3618	11.0707	11.2505	12.942
79 Au	68.8037	66.9895	77.984	9.7133	9.6280	11.4423	11.5847	13.381
80 Hg	70.819	68.895	80.253	9.9888	9.8976	11.8226	11.9241	13.830
81 TI	72.8715	70.8319	82.576	10.2685	10.1728	12.2133	12.2715	14.291
82 Pb	74.9694	72 9042	94.026	10.5515				
83 Bi	77.1079	72.8042 74.8148	84.936	10.5515	10.4495	12.6137	12.6226	14.7644
84 Po	79.290		87.343	10.8388	10.73091	13.0235	12.9799	15.2477
35 At	81.52	76.862 78.95	89.80	11.1308	11.0158	13.447	13.3404	15.744
36 Rn	83.78		92.30	11.4268	11.3048	13.876	_	16.251
37 Fr	86.10	81.07	94.87	11.7270	11.5979	14.316	_	16.770
88 Ra		83.23	97.47	12.0313	11.8950	14.770	14.45	17.303
	88.47	85.43	100.13	12.3397	12.1962	15.2358	14.8414	17.849
89 Ac	90.884	87.67	102.85	12.6520	12.5008	15.713	-	18.408
00 Th	93.350	89.953	105.609	12.9687	12.8096	16.2022	15.6237	18.9825
1 Pa	95.868	92.287	108.427	13.2907	13.1222	16.702	16.024	19.568
2 U	98.439	94.665	111.300	13.6147	13.4388	17.2200	16.4283	20.1671
3 Np	-	-	_	13.9441	13.7597	17.7502	16.8400	20.7848
4 Pu	_	_		14.2786	14.0842	18.2937	17.2553	21.4173
5 Am	_	_	_	14.6172	14.4119	18.8520	17.6765	22.0652

La tecnica XRF e' un metodo qualitativo nonche' quantitativo di analisi chimica di elementi in tracce. In linea di principio e' applicabile a tutti gli elementi con esclusione dell'idrogeno e dell'elio coprendo ampio intervallo energetico (50 eV - 100 keV).

Gli elementi leggeri non sono comunque facili a misurarsi.

L'analisi per fluorescenza ha in pratica un limite inferiore posizionato al numero atomico 13 (AI).

I generatori di raggi x che sono utilizzati per eccitare le linee di fluorescenza sono alimentati a tensioni che vanno dai 5-10 kV ai 50 - 60 kV in modo tale da contenere i costi delle apparecchiature nonche' limitare rischi da radiazioni mper il personale coinvolto specialmente nelle misure in situ.

L'intervallo energetico delle linee di fluorescenza che vengono in genere utilizzate e' 1keV – 25keV.

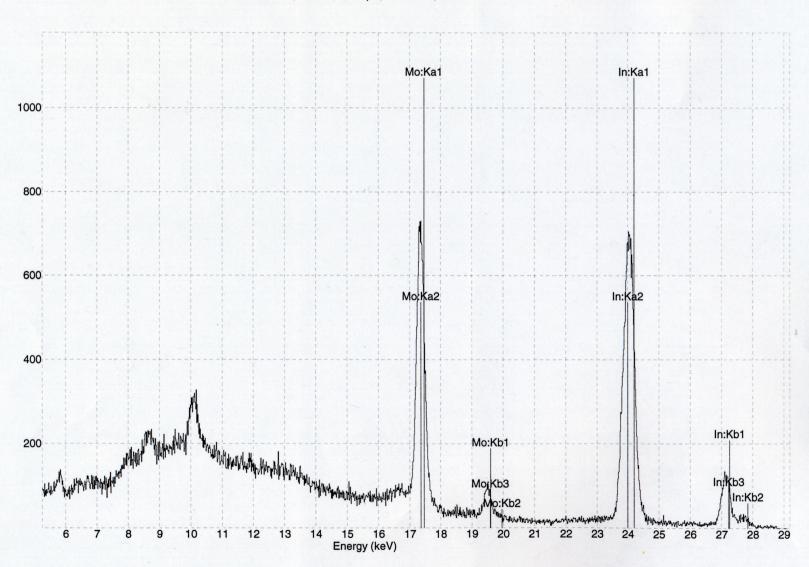
Per le analisi di elementi con numero atomico superiore a 50 (Sn) vengono utilizzate le linee L anziche' le linee K.

Misure XRF

Le misure sono effettuate in tempi dell'ordine di qualche centinaio di secondo.

L'informazione ottenuta è relativa ad uno **strato superficiale** del campione (metalli frazione di qualche mm - legno qualche cm) di **area** pari alla dimensione del fascio incidente: da **qualche** mm² (secondo le esigenze si può diminuire tale dimensione, si possono avere "spot" del diametro di 50-100 μ m) a **qualche** cm².

E' cosi' possibile ottenere informazioni e dati sulla composizione del manufatto irraggiandolo con fotoni di energia opportuna misurando poi l'energia e l'intensita' della fluorescenza emessa.


L'energia dei raggi x emessi e' caratteristica dell'atomo irraggiato.

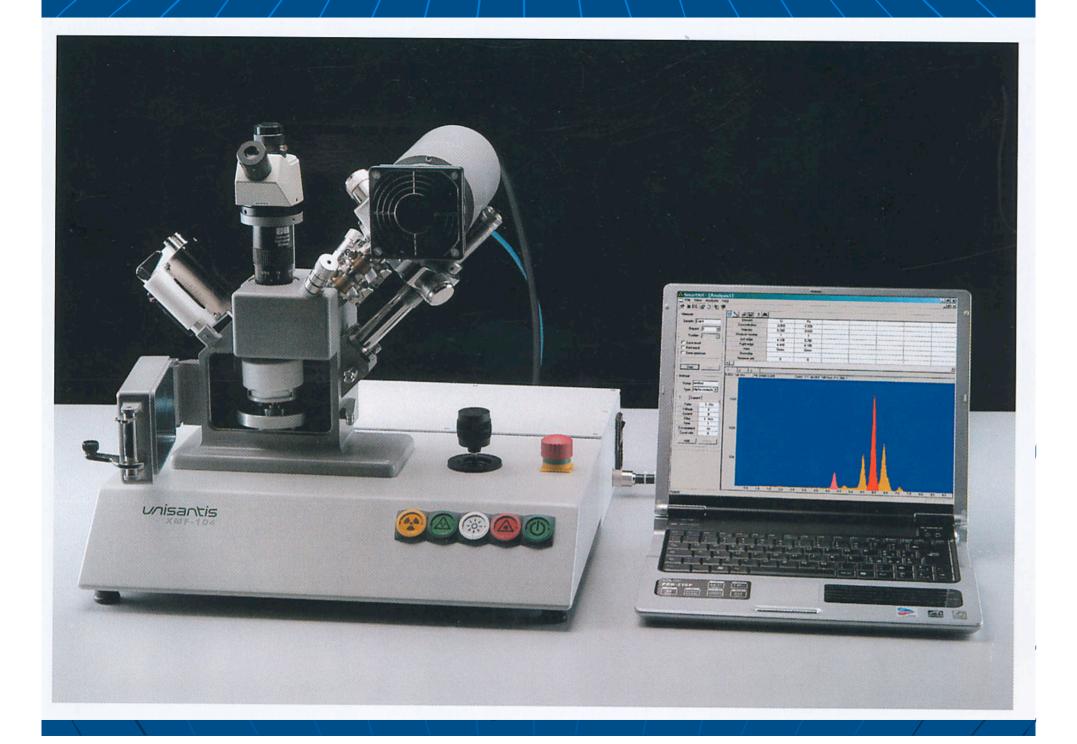
L'intensita' dei raggi x emessi e' caratteristica dell'abbondanza dell'atomo irraggiato nel manufatto in esame.

Spettro XRF

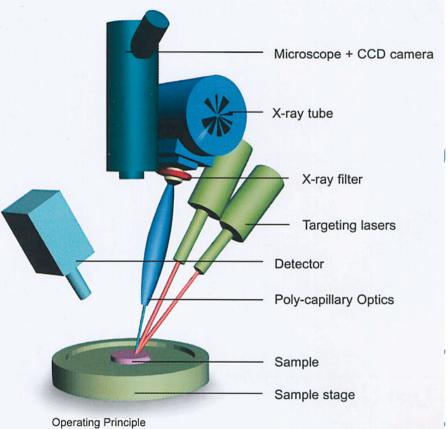
Indio lastrina T:1, 45.0kV, 200.0µA, F:No filter, 120s. /

Intensity (count)

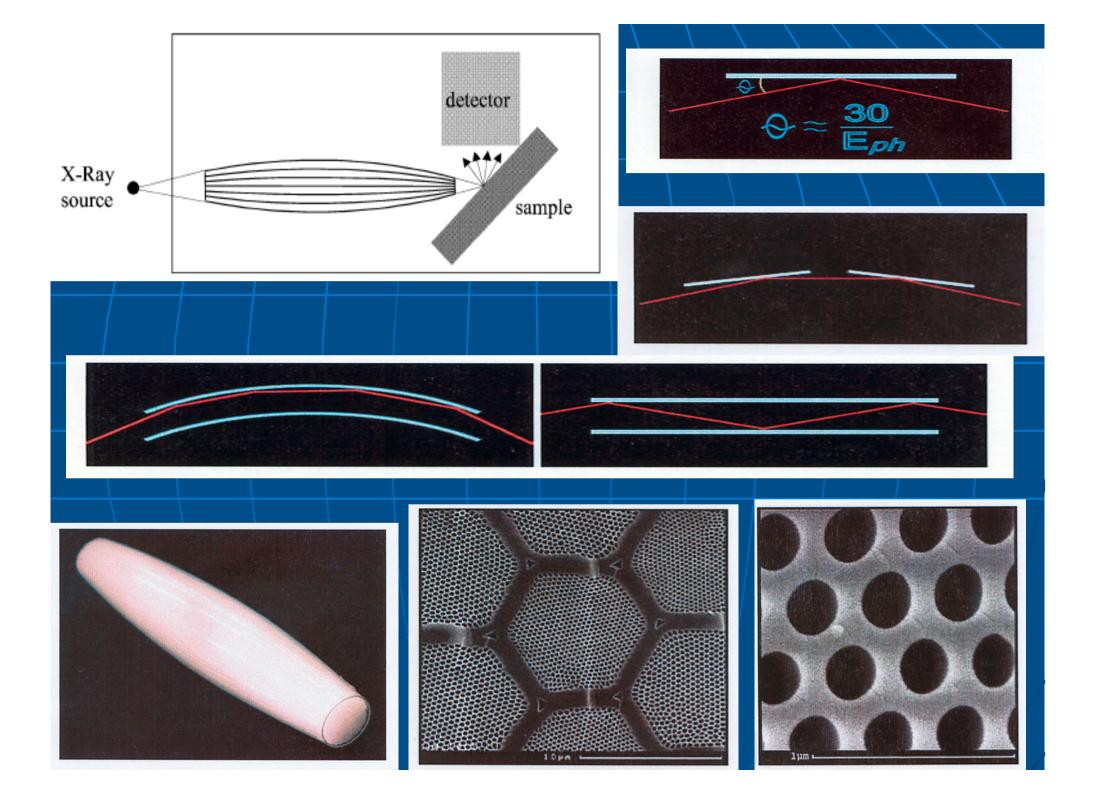
APPLICAZIONI (XRF)


- Dipinti
- Manufatti metallici
- Manufatti ceramici
- Smalti

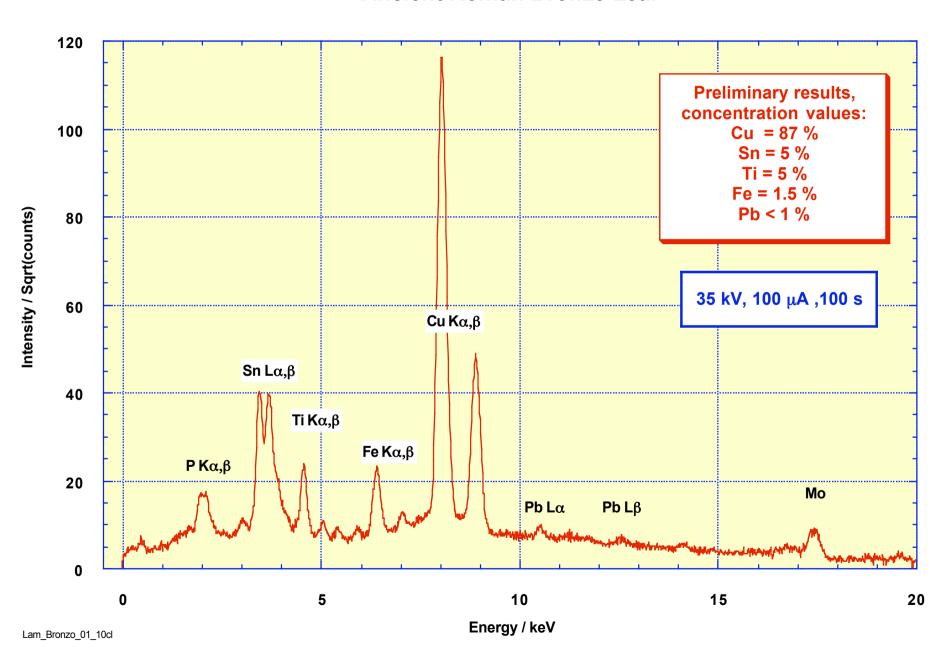
Informazioni (XRF)


- Individuazione qualitativa degli elementi chimici presenti nel campione con percentuali in peso
 qualche percento
- Determinazione quantitativa, con errore di qualche percento, degli elementi chimici presenti nel campione

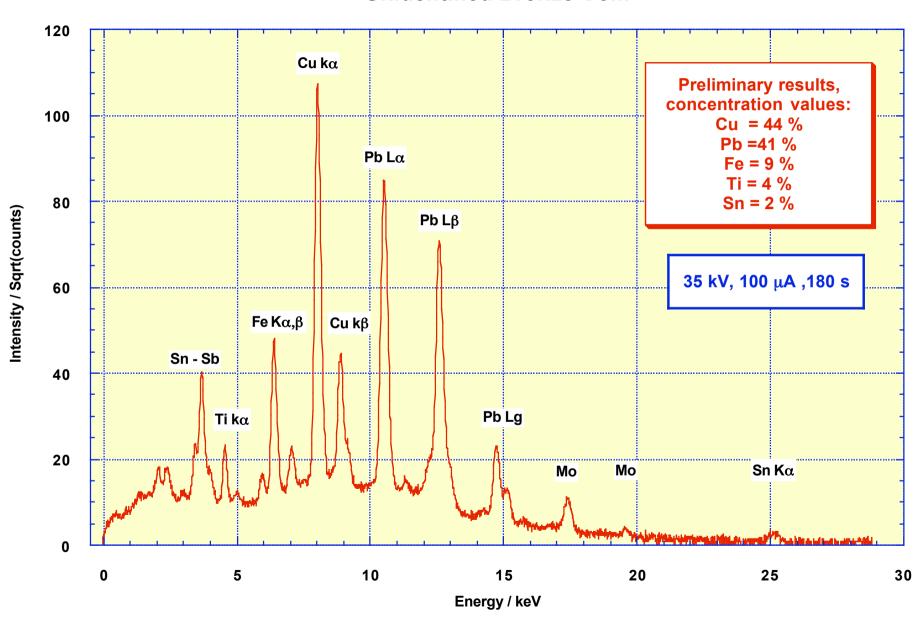
Apparato strumentale

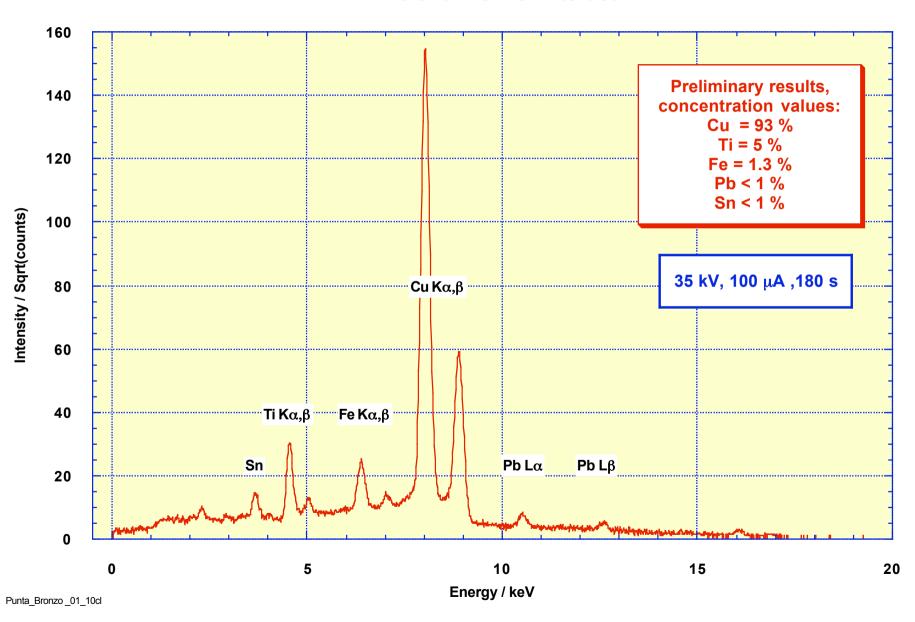

- Sorgente raggi X (energia ≤ 60 keV)
- Campione
- Rivelatore a semiconduttore Si(Pin)
 raffreddato per effetto Peltier
- Amplificatore di segnale analogico
- Analizzatore multicanale MCA (convertitore analogico/digitale)
- Sistema di acquisizione ed elaborazione dati

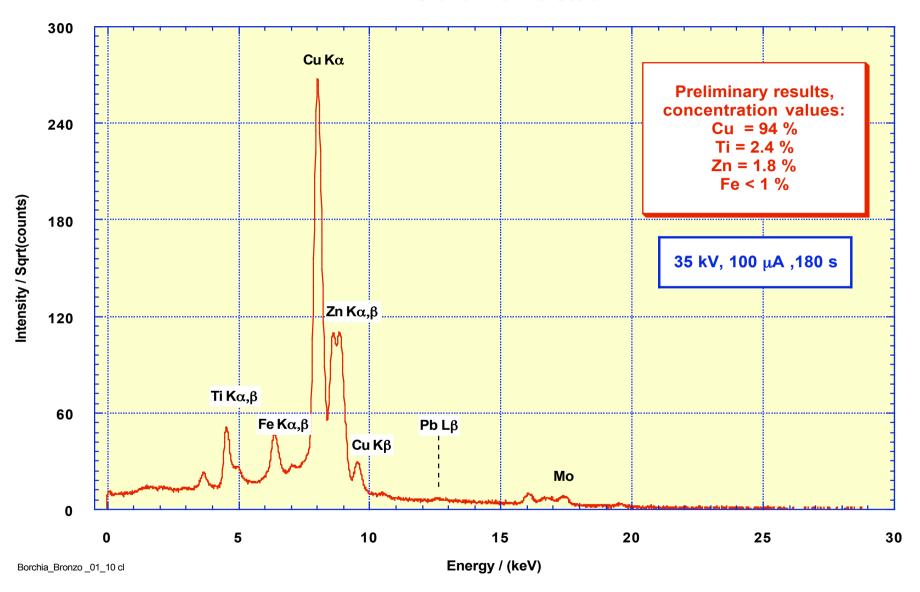
Indagini non distru


Sant'Omobono Site Excavation a Tiberina We Bartolomeo Z. S. Giorgio Piscinula di Giano 18 Pte Palatino Cloaca Massima in Cosmedin cilia in Cappella

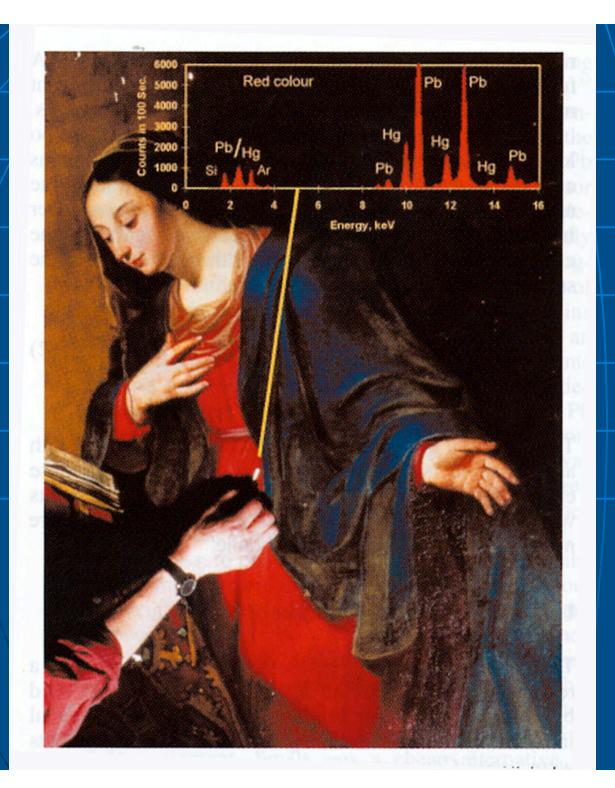
Sant'Omobono Site Excavation




Ancient Roman Bronze Leaf

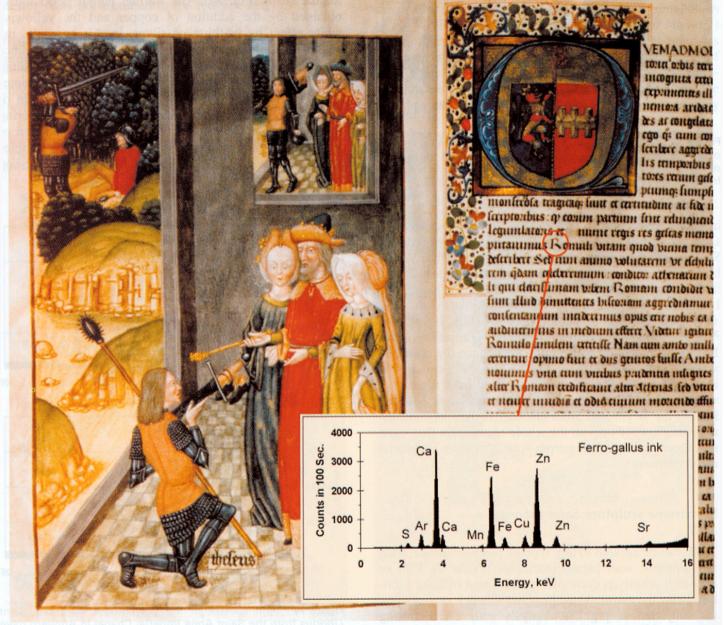

Unidentified Bronze Coin

Ancient Bronze Artefact

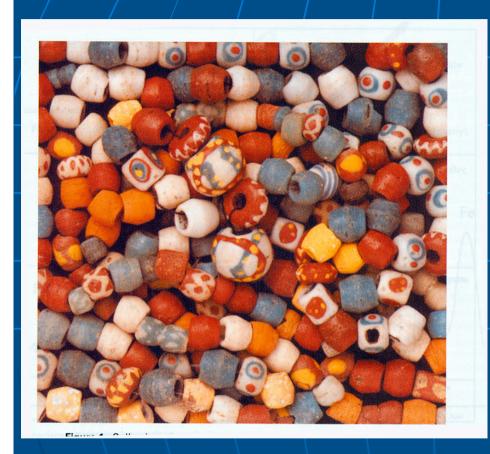

Comments

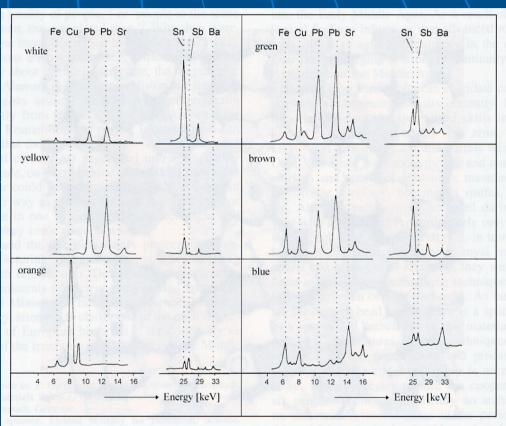
Because this kind of analysis must be non-destructive as well as little invasive, it is clear the difficulty to study such artefacts.

The spectra collected show bronzes with different composition ascribable to different ages and/or origin.


In order to make quantitative analysis is necessary to have for comparison

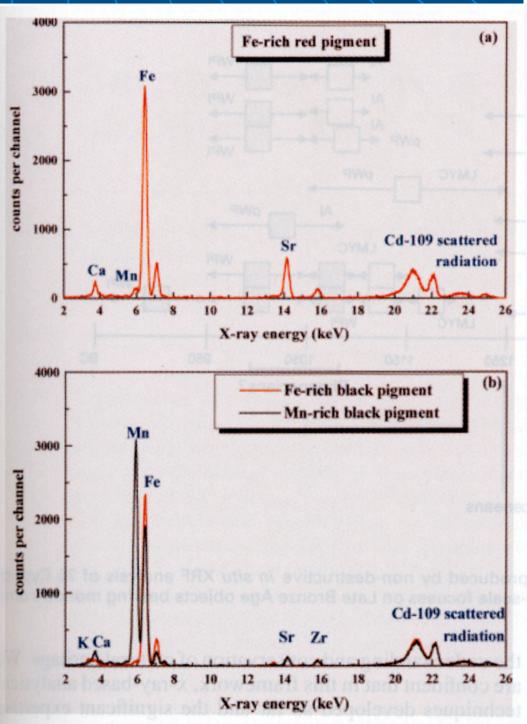
- many bronze artefacts of sure origin and composition;
- bronze standards with different concentrations and compositions

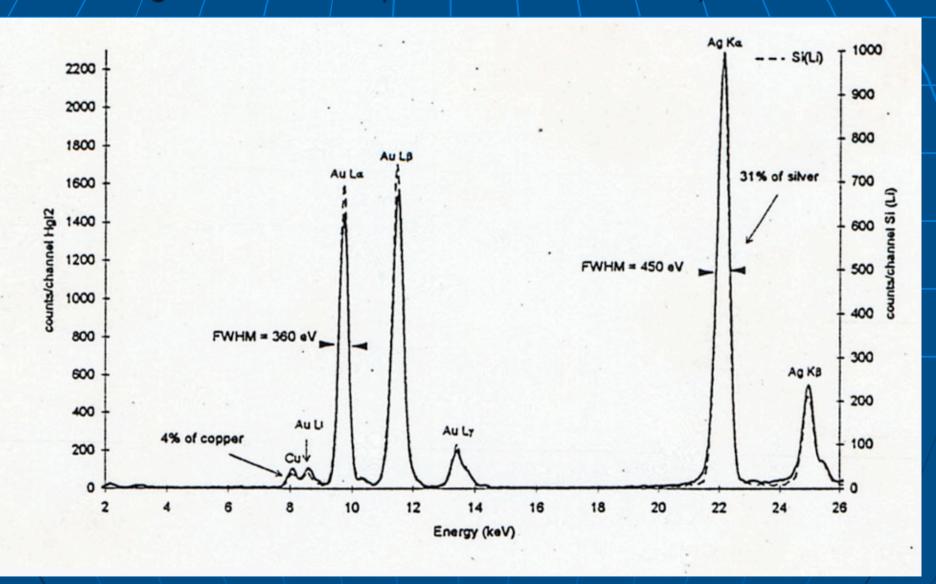



XRF dipinti Van den Heuvel Annunciazione

XRF inchiostro
Raffaello de Mercatellis
manoscritto n.109

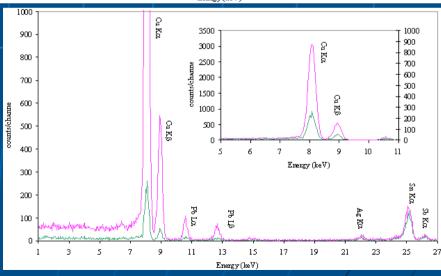
XRF vetro cimitero Merovingio - perline



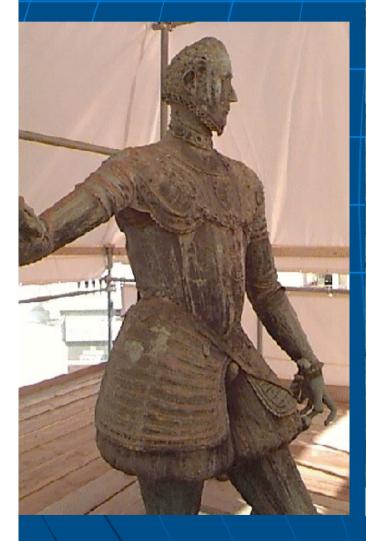

XRF terracotta

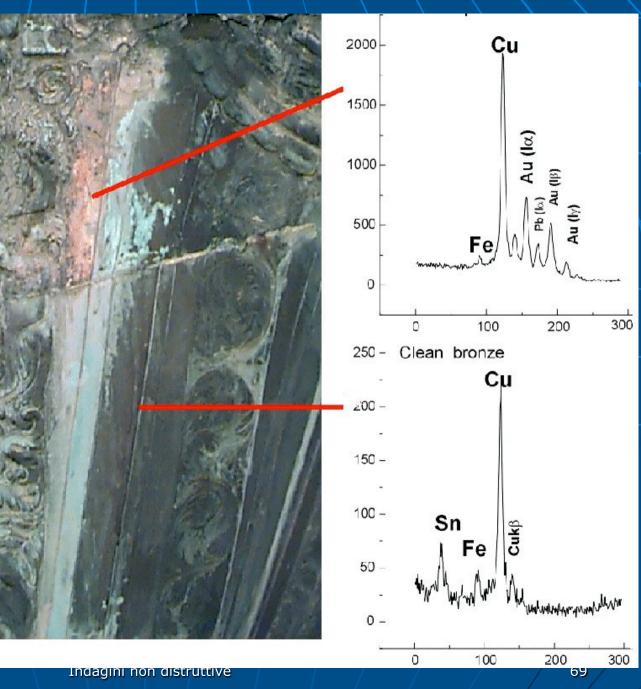
Museo di Nicosia terrecotte cipriote

XRF oro gioielli etruschi (Collezione Castellani)


XRF bronzo

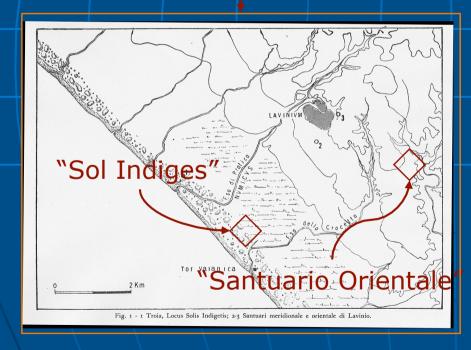
studio della patina e della lega in vari punti Cellini - Perseo




200 - 250 -

Esempio di influenza della patina sullo spettro.

XRF bronzo




- <u>Provenienza</u> (scambi commerciali-culturali, rete di comunicazione)
- ➤ Tecnologia costruttiva [ausilio XRD] (epoca economica, livello sociale)

Lavinium (attuale Pratica di Mare)

30 km Roma-sud sul mare Tirreno

Il sito archeologico

Nel 1957 archeologi dell'Università "La Sapienza" intraprendono i primi scavi nella zona della città

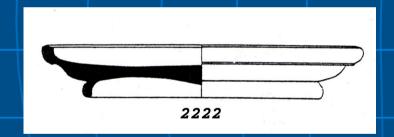
Santuario Sol Indiges

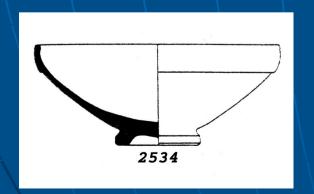
localizzato nel 1966-67 da Castagnoli

alla luce il tempio su podio esastilo di tipo periptero sine postico

La ceramica a vernice nera

La maggior parte dei reperti proviene dagli scavi dell'area del tempio "Sol Indiges", una minor parte dal "Santuario Orientale".





Produzione della ceramica

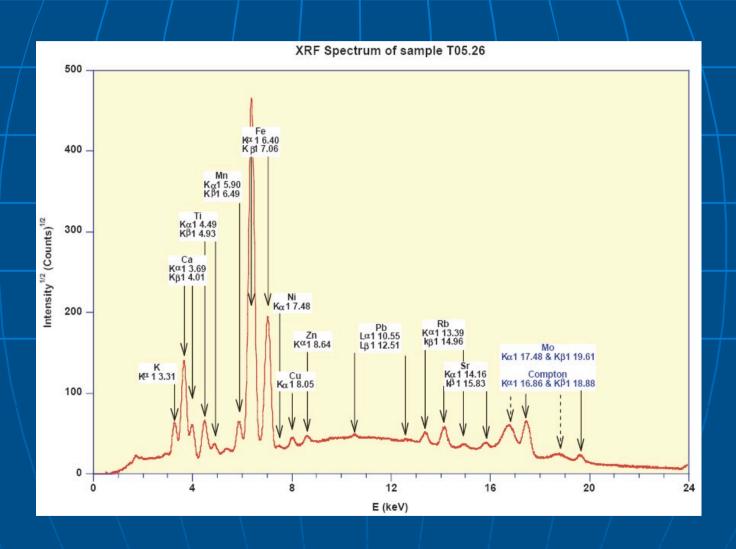
- Estrazione dell'argilla
- Preparazione dell'argilla
- Modellazione
- Essiccazione
- Cottura

Classificazione stilistico formale

dal profilo del reperto si risale alla forma

Classificazione di Morel (ceramica a vernice nera)

forma → epoca e provenienza


Analisi dei campioni

Campioni ad oggi analizzati: 80 (ciascuno per 600 s)

L'analisi qualitativa dei picchi ha permesso l'identificazione dei seguenti elementi: Al, Si, S, Cl, Ar, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Pb, Rb, Sr

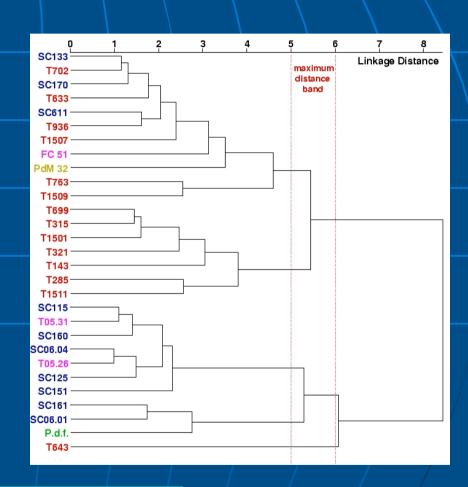
L'analisi semi-quantitativa (metodo dei parametri fondamentali) è fatta sui 10 elementi più abbondanti (con errore relativo sui conteggi dell'area del picco inferiore al 4%)

Spettro dell'impasto

Cluster Analysis

Metodo di agglomerazione gerarchico ascendente dei campioni basato su similarità tra di essi:

Attributi → concentrazione degli elementi presenti nel campione


(picchi con errore relativo sull'area netta inferiore al 4%)

Oggetti → reperti di ceramica

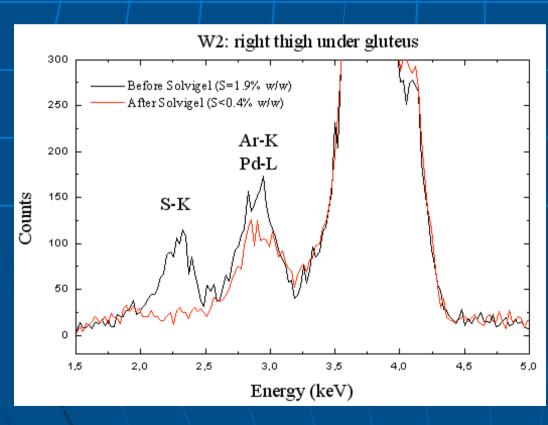
Risultati

- Determinazione della similarità: minima distanza Euclidea
- Metodo di agglomerazione: algoritmo di varianza minima (metodo di Ward)
- minima somma E dei quadrati di ipotetiche classi formatesi ad ogni passo

oggetto	attributo	attributo
1	x_1	y ₁
2	x ₂	y ₂
n	x _n	y _n

$$E_{ij} = (x_i - \overline{x_{ij}}) + (x_j - \overline{x_{ij}}) + (y_i - \overline{y_{ij}}) + (y_j - \overline{y_{ij}}) + \sum_{k \neq i, j} (x_k - x_k)^2 + (y_k - y_k)^2$$

Applicazione recente (XRF)

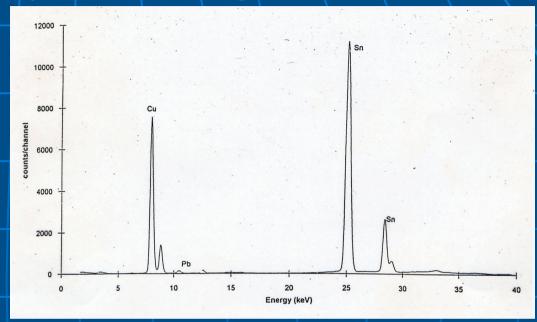

- Materiale lapideo
- Affreschi

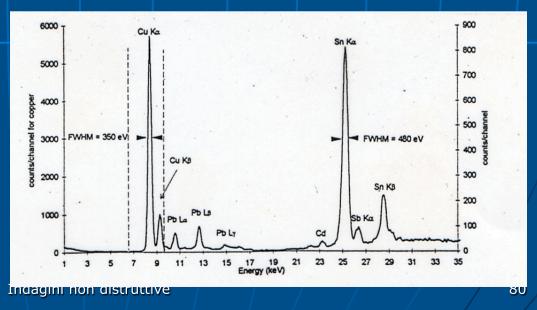
Informazione

 Analisi quantitativa degli inquinanti S (0.1% min) e Cl

XRF marmo prove di pulizia studio dei solfati Michelangelo - David

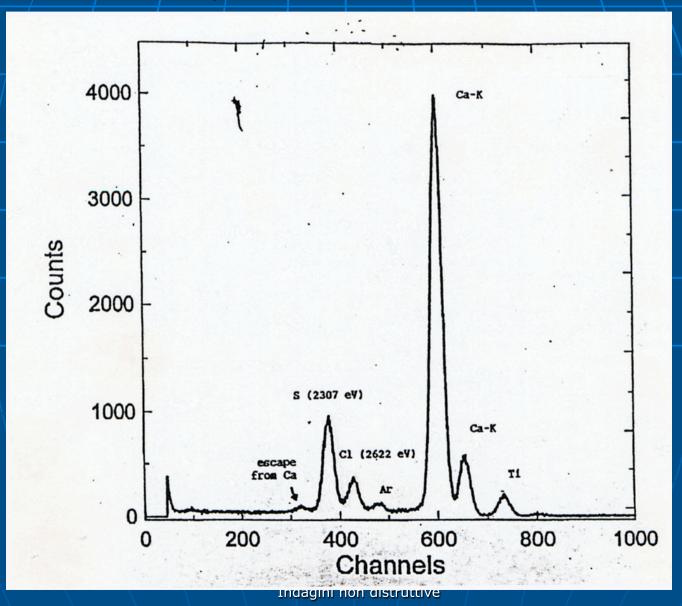
Misura dell'efficacia di un solvente nella rimozione dello Zolfo




XRF bronzi

Differenti composizioni della lega

Tipico spettro di un bronzo nuragico (presenza di Pb <1%)


Oggetto di bronzo trovato nell'isola di Vivara (Na)

XRF affresco

studio del deposito di S e Cl, prodotti degli inquinanti atmosferici

Limiti (XRF)

- Non sono individuabili materiali con Z piccolo (composti organici).
- Impossibilita' di effettuare determinazioni quantitative (effetto matrice ed effetto schermo)
- Impossibilita' di determinare i composti chimici

XRF = X Ray Fluorescence

SRXRD = Synchrotron XRF

XRD = X Ray Diffrattometry

REXRD = Radioisotopes-exited XRF

PGAA = Prompt Gamma-ray Activation Analysis

NAA = Neutron Activation Analysis

CPAA = Charge Particle Activation Analysis

PIGE = Particle-Induced γ -ray Emission

PIXE = Particle-Induced x-ray Emission

RBS = Rutherford Backscattering Spectrometry

HIRBS = Heavy Ions Rutherford Backscattering Spectrometry

EBS = Elastic Backscattering Spectrometry

PES = Proto Elastic Scattering

Conclusioni

I metodi analitici fisici sono senza dubbio uno strumento di analisi potente, applicato ampiamente e con successo nel campo dello studio dei manufatti artistici e archeologici.

Essi hanno lo scopo di essere un utile se non addirittura indispensabile strumento nelle mani degli operatori dell'arte e dell'archeologia per la salvaguardia di tutti i Beni Culturali.

E' appena il caso di auspicare comunque una completa osmosi degli studiosi (fisici, chimici, archeologi, restauratori etc.) allo scopo di raggiungere l'obbiettivo comune.