

Introduzione alla fisica del plasma di quark e gluoni

Federico Antinori (INFN, Padova e CERN, Ginevra)

Laboratori Nazionali di Frascati, 4 ottobre 2017

Contents

- Open puzzles in Quantum Chromo-Dynamics
- Confinement and deconfinement
 - (an "intuitive" view)
- Ultra-relativistic nucleus-nucleus collisions
- Intermezzo: the Large Hadron Collider
- Intermezzo: kinematic variables
- A few selected results
- Conclusions

Contents

- Open puzzles in Quantum Chromo-Dynamics
- Confinement and deconfinement
 - (an "intuitive" view
- Ultra-relativistic nucleus-nucleus collisions
- Intermezzo: the Large Hadron Collider
- Intermezzo: kinematic variables
- A few selected results
- Conclusions

The Standard Model and QCD

Π		В	Ν	Λ	DN	
	_		1			

Leptons spin = 1/2			
Flavor	Mass GeV/c ²	Electric charge	
$ u_{e}^{electron}_{neutrino} $	<1×10 ⁻⁸	0	
e electron	0.000511	-1	
$ u_{\mu}^{\text{muon}}$ neutrino	<0.0002	0	
$oldsymbol{\mu}$ muon	0.106	-1	
$ u_{ au}^{ ext{tau}}_{ ext{neutrino}}$	<0.02	0	
$oldsymbol{ au}$ tau	1.7771	-1	

matter constituents spin := 1/2, 3/2, 5/2, ...

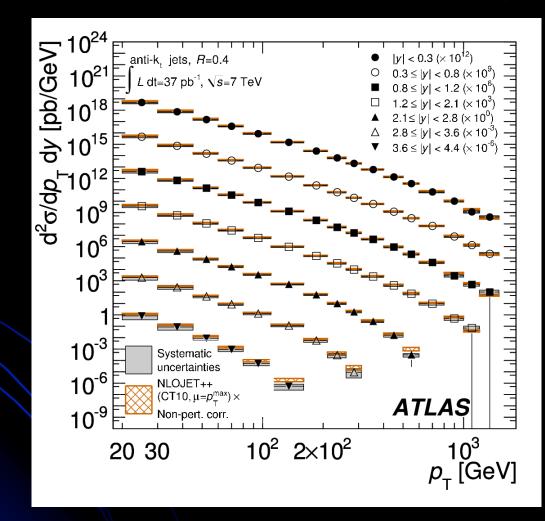
Quarl	<s< b=""> spin</s<>	= 1/2
Favor	Approx. Mass GeV/c ²	Electric charge
U up	0.003	2/3
d down	0.006	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	175	2/3
b beauty	4.3	-1/3

BOSONS

Unified Electroweak spin = 1			
Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	
W-	80.4	-1	
W+	80.4	+1	
Z ⁰	91.187	0	

force carriers spin = 0, 1, 2, ...

Strong (color) spin = 1		
Name	Mass GeV/c ²	Electric charge
g gluon	0	0


strong interaction:

- binds quarks into hadrons
- binds nucleons into nuclei

described by QCD:

- interaction between particles carrying colour charge (quarks, gluons)
- mediated by strong force carriers (gluons)
- very successful theory

e.g.: pQCD vs production of high energy jets

ATLAS: arXiv:1112.6297

F Antinori - LNF - 4 ottobre 2017

The Standard Model and QCD

	-
FERMION	2

Leptons spin = 1/2			
Flavor	Mass GeV/c ²	Electric charge	
$ u_{e}^{electron}_{neutrino} $	<1×10 ⁻⁸	0	
e electron	0.000511	-1	
$ u_{\mu}^{\mu}$ muon neutrino	<0.0002	0	
$oldsymbol{\mu}$ muon	0.106	-1	
$ u_{ au}^{ ext{tau}}_{ ext{neutrino}}$	<0.02	0	
$oldsymbol{ au}$ tau	1.7771	-1	

matter constituents spin = 1/2, 3/2, 5/2, .

Quarl	<s< b=""> spin</s<>	= 1/2
Favor	Approx. Mass GeV/c ²	Electric charge
U up	0.003	2/3
d down	0.006	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	175	2/3
b beauty	4.3	-1/3

BOSONS

Unified Electroweak spin = 1			
Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	
W-	80.4	-1	
W+	80.4	+1	
Z ⁰	91.187	0	

force carriers spin = 0, 1, 2, ...

Strong (color) spin = 1		
Name	Mass GeV/c ²	Electric charge
g gluon	0	0

- strong interaction:
 - binds quarks into hadrons
 - binds nucleons into nuclei

described by QCD:

- interaction between particles carrying colour charge (quarks, gluons)
- mediated by strong force carriers (gluons)

very successful theory

- jet production
- particle production at high p_T
- heavy flavour production
- ...
- ... but with outstanding puzzles

Two puzzles in QCD: i) hadron masses

FERMIONS

Leptons spin = 1/2				
Flavor	Mass GeV/c ²	Electric charge		
Ve electron neutrino	<1×10 ⁻⁸	0		
e electron	0.000511	-1		
$ u_{\mu}^{muon}$ neutrino	<0.0002	0		
$oldsymbol{\mu}$ muon	0.106	-1		
$ u_{ au}^{ ext{tau}}_{ ext{neutrino}}$	<0.02	0		
$oldsymbol{ au}$ tau	1.7771	-1		

matter constituents spin = 1/2, 3/2, 5/2, ...

Quarl	<s< b=""> spin</s<>	= 1/2	
Flavor	Approx. Mass GeV/c ²	Electric charge	
U up	0.003	2/3	
d down	0.006	-1/3	
C charm	1.3	2/3	
S strange	0.1	-1/3	
t top	175	2/3	
b beauty	4.3	-1/3	

BOSONS

Unified Electroweak spin = 1			
Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	
W-	80.4	-1	
W+	80.4	+1	
Z ⁰	91.187	0	

NS force carriers spin = 0, 1, 2, ...

Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	
g gluon	0	0	

A proton is thought to be made of two u and one d quarks

- The sum of their masses is around 12 MeV
- ... but the proton mass is 938 MeV!
- how is the extra mass generated?

F Antinori - LNF - 4 ottobre 2017

Two puzzles in QCD: ii) confinement

FERMIONS

Leptons spin = 1/2		
Flavor	Mass GeV/c ²	Electric charge
Ve electron neutrino	<1×10 ⁻⁸	0
e electron	0.000511	-1
$ u_{\mu}^{muon}$ neutrino	<0.0002	0
$oldsymbol{\mu}$ muon	0.106	-1
$ u_{ au}^{ ext{tau}}_{ ext{neutrino}}$	<0.02	0
$oldsymbol{ au}$ tau	1.7771	-1

matter constituents spin = 1/2, 3/2, 5/2, ...

Quarks spin = 1/2			
Flavor	Approx. Mass GeV/c ²	Electric charge	
U up	0.003	2/3	
d down	0.006	-1/3	
C charm	1.3	2/3	
S strange	0.1	-1/3	
t top	175	2/3	
b beauty	4.3	-1/3	

BOSONS

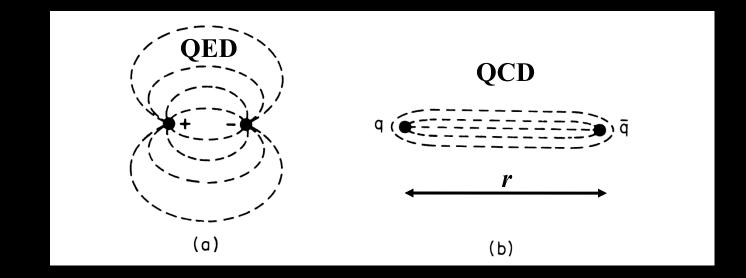
Unified Electroweak spin = 1			
Name	Mass GeV/c ²	Electric charge	
γ photon	0	0	
W-	80.4	-1	
W+	80.4	+1	
Z ⁰	91.187	0	

NS force carriers spin = 0, 1, 2, ...

Strong (color) spin = 1			
Name	Mass GeV/c ²	Electric charge	
g gluon	0	0	

- Nobody ever succeeded in detecting an isolated quark
- Quarks seem to be permanently confined within protons, neutrons, pions and other hadrons.
- It looks like one half of the fundamental fermions are not directly observable...
 why?

Contents


- Open puzzles in Quantum Chromo-Dynamics
- Confinement and deconfinement
 - (an "intuitive" view)
- Ultra-relativistic nucleus-nucleus collisions
- Intermezzo: the Large Hadron Collider
- Intermezzo: kinematic variables
- A few selected results
- Conclusions

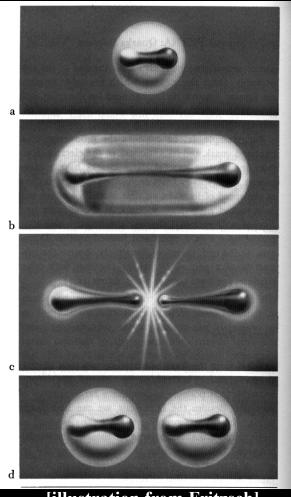
Confinement

- At scales of the order of the hadron size (~ 1 fm) perturbative methods lose validity
- Calculations rely on approximate methods (such as lattice theory or effective theories)
- There are compelling arguments (but no rigorous proof) that the non-abelian nature of QCD is responsible for the confinement of colour

[see e.g. Gottfried-Weisskopf, p. 99]

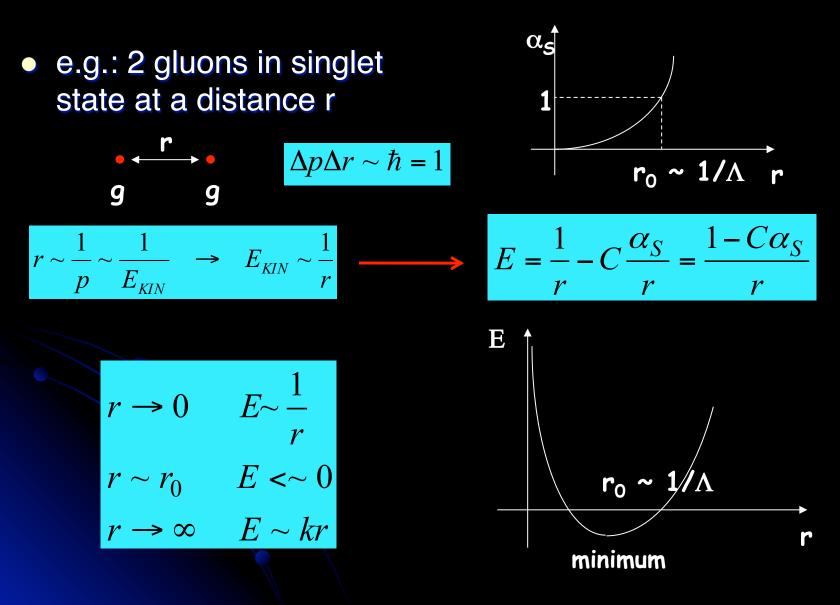
Confining potential in QCD

 In QCD, the field lines are compressed into a "flux tube" (or "string") of constant cross-section (~fm²), leading to a longdistance potential which grows linearly with r:


$$V_{long} = kr$$

with $k \sim 1$ GeV/fm

F Antinori - LNF - 4 ottobre 2017


String breaking

- If one tries to pull the string apart, when the energy stored in the string (*k r*) reaches the point where it is energetically favourable to create a qq pair, the string breaks...
- ...and one ends up with two colourneutral strings (and eventually hadrons)

[illustration from Fritzsch]

QCD vacuum

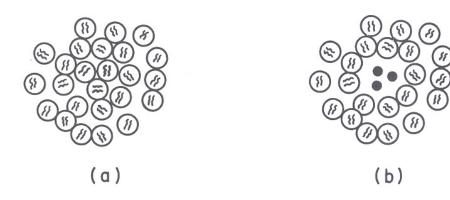
QCD vacuum

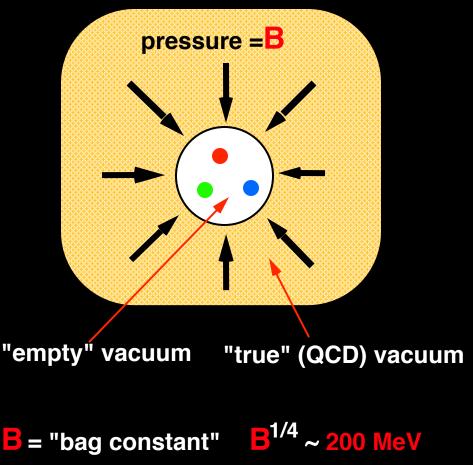
 The "empty" vacuum is unstable. There is a state of lower energy that consists of cells, each containing a gluon pair in colour- and spin- singlet state. The size of these cells is of order r₀. We may speak of a "liquid" vacuum.

Gottfried-Weisskopf, IV C

Bag Model

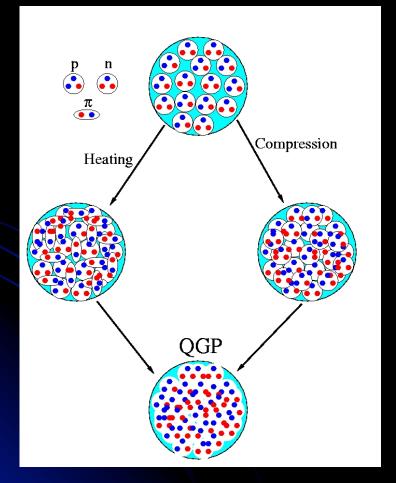
- Due to the non-abelian nature of QCD and to the large value of the QCD coupling, the QCD vacuum is a rather complex object, behaving practically as a liquid
- The MIT bag model describes the essential phenomenology of confinement by assuming that quarks are confined within bubbles (bags) of perturbative (= empty) vacuum of radius *R* upon which the QCD vacuum exerts a confining pressure *B*




FIG. 9. The QCD vacuum state is depicted in (a). It is a random distribution of cells that contain a gluon pair in a color and spin singlet state. Quarks (in a color singlet configuration) displace these cells, creating a region (or "bag") of "empty" vacuum, as shown in (b).

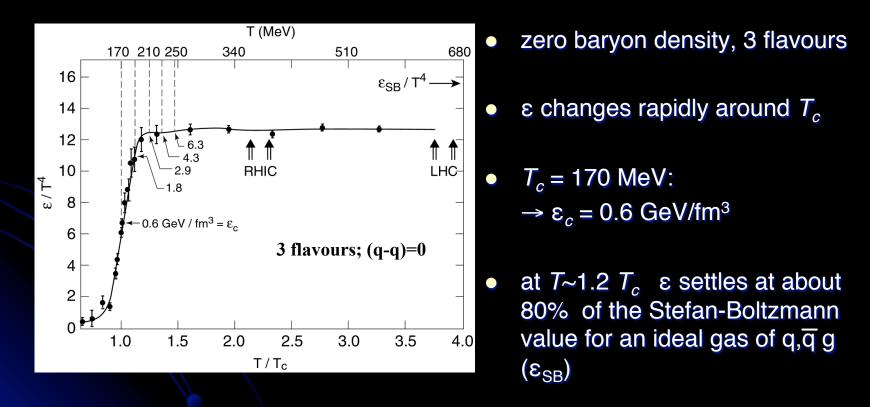
F Antinori - LNF - 4 ottobre 2017

[see e.g. Gottfried-Weisskopf, p. 399]


- The bubble radius *R* is determined by the balance between the vacuum pressure *B* and the outward kinetic pressure exerted by the quarks
- From hadron spectra:
 - $B \sim (200 \text{ MeV})^4$

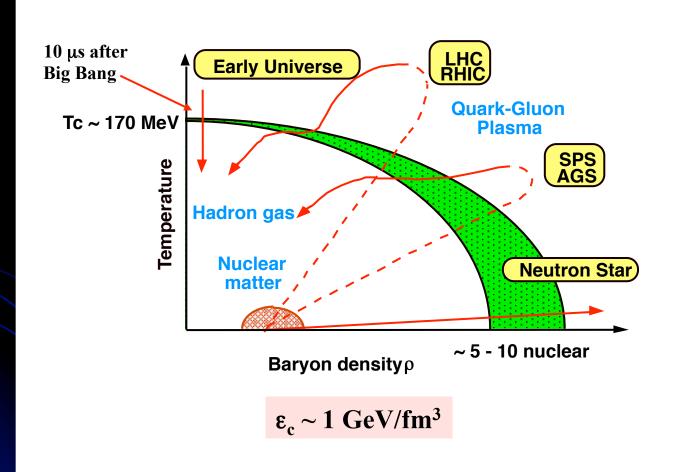
Deconfinement

 What if we compress/heat matter so much that the individual hadrons start to interpenetrate?



Lattice QCD predicts that if a system of hadrons is brought to sufficiently large density and/or temperature a deconfinement phase transition should occur

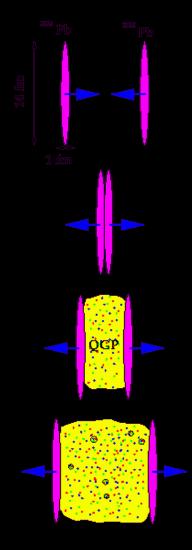
In the new phase, called Quark-Gluon Plasma (QGP), quarks and gluons are no longer confined within individual hadrons, but are free to move around over a larger volume


Lattice QCD

- rigorous way of doing calculations in non-perturbative regime of QCD
- discretization on a space-time lattice
 - \rightarrow ultraviolet (large momentum scale) divergencies can be avoided

QCD phase diagram

• an "artist's view"...

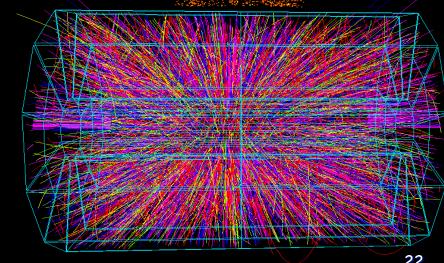


Contents

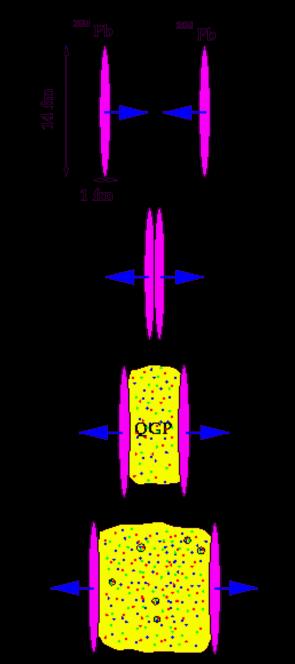
- Open puzzles in Quantum Chromo-Dynamics
- Confinement and deconfinement
 - (an "intuitive" view)
- Ultra-relativistic nucleus-nucleus collisions
- Intermezzo: the Large Hadron Collider
- Intermezzo: kinematic variables
- A few selected results
- Conclusions

Nucleus-nucleus collisions

- How do we test this theory in the lab?
- How can we compress/heat matter to such cosmic energy densities?
- By colliding two heavy nuclei at ultrarelativistic energies we recreate, for a short time span (about 10⁻²³s, or a few fm/ c) the conditions for deconfinement

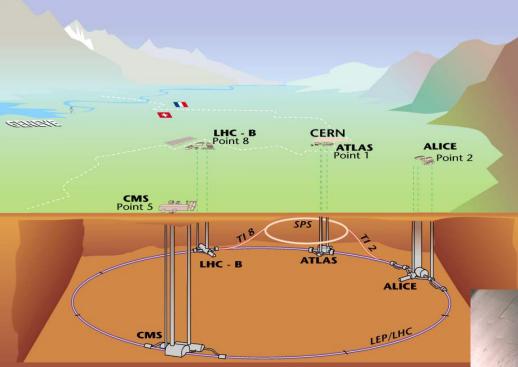


- as the system expands and cools down it will undergo a phase transition from QGP to hadrons again, like at the beginning of the life of the Universe: we end up with confined matter again
 - QGP lifetime ~ a few fm/c


 The properties of the medium must be inferred from the properties of the hadronic final state

Free the quarks!

- Temperature ~ 2 10¹² degrees
- 100 000 times the temperature at the centre of the Sun
- similar conditions are thought to have been present about 10 µs after the Big Bang
- quarks not any more confined inside protons, neutrons, etc...
- "Quark-Gluon Plasma"


Contents

- Open puzzles in Quantum Chromo-Dynamics
- Confinement and deconfinement
 - (an "intuitive" view)
- Ultra-relativistic nucleus-nucleus collisions
- Intermezzo: the Large Hadron Collider
- Intermezzo: kinematic variables
- A few selected results
- Conclusions

F Antinori - LNF - 4 ottobre 2017

Large Hadron Collider (LHC)

- 27 km circumference
- about 100 m underground
- particles accelerated to 99.9999991 % of light speed
- 11 245 orbits per second

- superconducting magnets
- T = 1.9 K = -271.25 C (absolute zero: -273.15 C)
 → coldest place in the solar system!

The LHC Superconducting Dipole

LHC: main parameters

(pp, 2017 run)

Parameter	Value
Proton energy [GeV]	6500
Number of particles/bunch	1.2 x 10 ¹¹
Number of bunches	2500
Transverse Emittance [µm rad]	2.3
β*IP1/5 [m]	0.40
Transverse beam size IP1/5 [µm]	12
Bunch length [ns]	1.05
Peak luminosity IP1/5 [cm ⁻² s ⁻¹]	1.7 x 10 ³⁴
Peak pileup IP1/5	50
Stored Energy [MJ]	320

A New Era in Fundamental Science

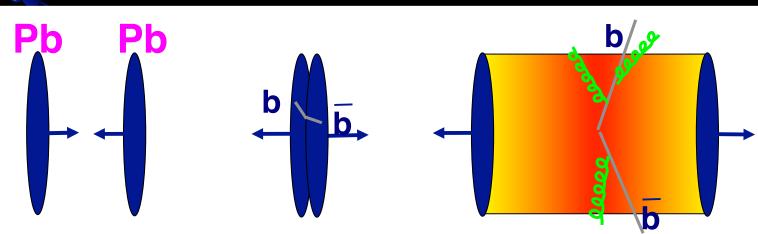
ATLA

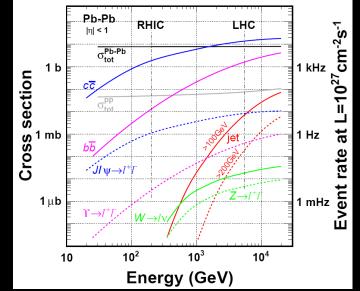
ALICE

ALICE

eyrin K

LHC ring: 27 km circumference

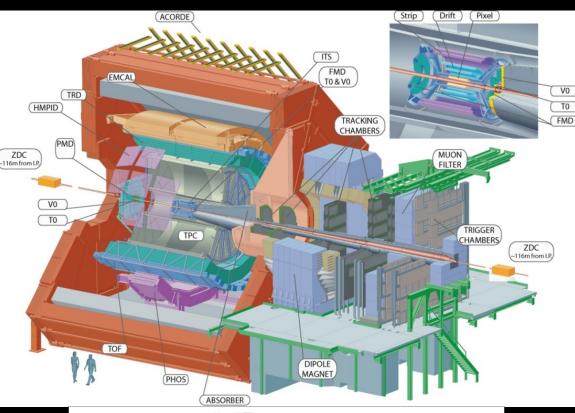

Nucleus-Nucleus collisions at the LHC!


		SPS	RHIC	LHC
√s _{NN}	[GeV]	17.3	200	5500
dN _{ch} /dy		450	800	1600
3	[GeV/fm ³]	3	5.5	~ 10

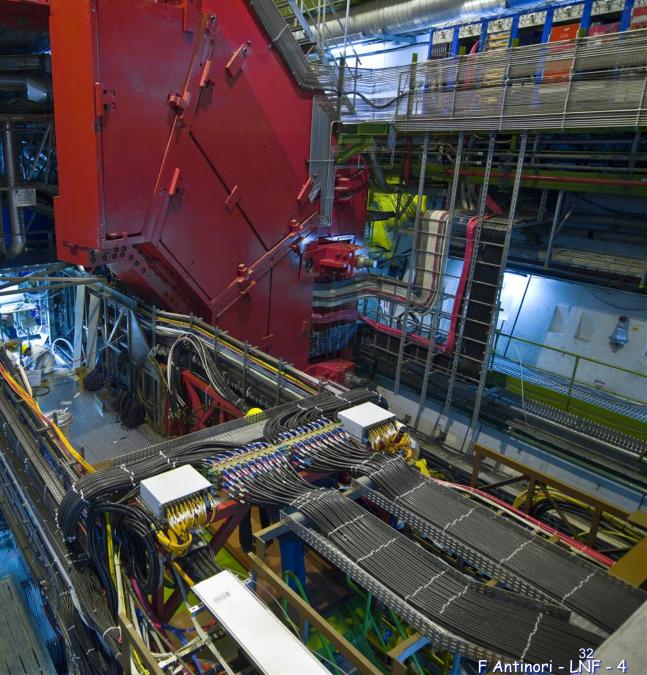
- large ε → deep deconfinement region
 → closer to "ideal" QGP behaviour
- Iarge cross section for "hard probes" !

 \rightarrow a new set of tools to probe the medium properties

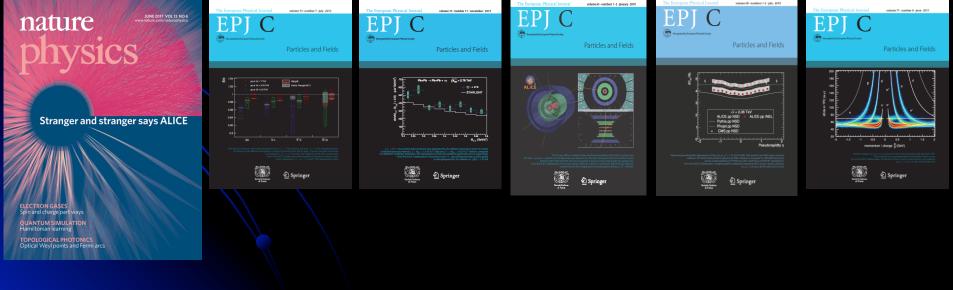
e.g.:



An LHC experiment: ALICE


- dedicated to AA collisions
- 16 x 16 x 26 m³
- 10 000 tonnes (~ Tour Eiffel)
- ~ 1900 collaborators
- 174 institutes, 42 countries
- largest contingent: Italy
 15 institutes, 232 scientists
- 15 years for conception, design, construction
- cost ~ 160 MCHF

F Antinori - LNF - 4 ottobre 2017


31

-

High scientific impact

- major scientific output
 - 177 ALICE papers on scientific journals
 - high-impact papers (average of ~ 80 citations per paper)
 - top-cited papers at the LHC after the Higgs discovery ones (source: ISI).
 - several hundred presentations at international conferences each year

Contents

- Open puzzles in Quantum Chromo-Dynamics
- Confinement and deconfinement
 - (an "intuitive" view)
- Ultra-relativistic nucleus-nucleus collisions
- Intermezzo: the Large Hadron Collider
- Intermezzo: kinematic variables
- A few selected results
- Conclusions

Rapidity

Four-momentum: (c = 1, z coordinate along collision axis)

$$p^{\mu} = (p^0, p^1, p^2, p^3) = (E, \vec{p}) = (E, \vec{p}_T, p_z = p_{//})$$

Addition of velocities along z:

$$v = v_1 + v_2 \quad \text{(Galileo)} \quad \beta = \frac{\beta_1 + \beta_2}{1 + \beta_1 \beta_2} \quad \text{(relativistic)}$$
$$\tanh(y_1 + y_2) = \frac{\tanh y_1 + \tanh y_2}{1 + \tanh y_1 \tanh y_2}$$

rapidity

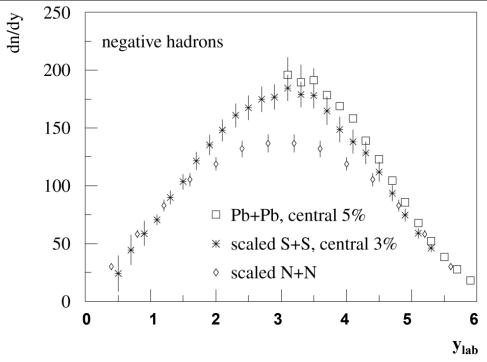
$$y = \tanh^{-1} \beta = \frac{1}{2} \log \left(\frac{1+\beta}{1-\beta} \right)$$

F Antinori - LNF - 4 ottobre 2017

• so under a Lorentz transformation to a frame moving with velocity *b* along *z* :

 $y \rightarrow y' = y - y_{\beta}$ (rapidities "add-up")

compare -


$$\Rightarrow p'_z = \gamma(p_z - \beta E)$$

e.g.: rapidity distributions

$$\frac{dN}{dy'}(y') = \frac{dN}{dy}(y = y' - y_{\beta})$$

e.g. at SPS:

$$y_{cm} = y_{lab} - y_{\beta}$$
 with $y_{\beta} \approx 3$

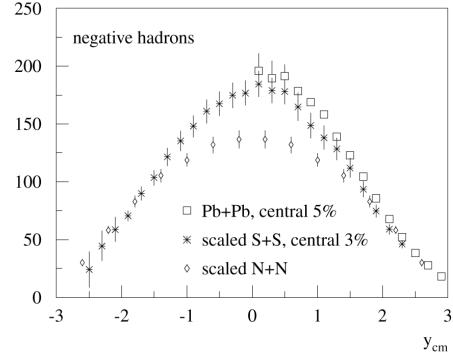
F Antinori - LNF - 4 ottobre 2017

• so under a Lorentz transformation to a frame moving with velocity *b* along *z* :

dn/dy

 $y \rightarrow y' = y - y_{\beta}$ (rapidities "add-up")

compare -


$$\Rightarrow p'_z = \gamma(p_z - \beta E)$$

e.g.: rapidity distributions

$$\frac{dN}{dy'}(y') = \frac{dN}{dy}(y = y' - y_{\beta})$$

e.g. at SPS:

$$y_{cm} = y_{lab} - y_{\beta}$$
 with $y_{\beta} \approx 3$

$$y = \tanh^{-1} \beta = \frac{1}{2} \log \left(\frac{1+\beta}{1-\beta} \right)$$

• in the non-relativistic limit:

$$y = \beta$$

it can be shown that:

$$y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$$

Transverse variables

• Transverse momentum:

$$\vec{p}_T = (p_x, p_y)$$

$$p_T = \sqrt{p_x^2 + p_y^2}$$

Transverse mass:

$$m_T = \sqrt{m^2 + p_T^2}$$
 $E = \sqrt{m^2 + p^2} = \sqrt{m_T^2 + p_z^2}$

$$p_z = m_T \sinh(y)$$

$$E = m_T \cosh(y)$$

Pseudorapidity

pseudorapidity

$$y = \frac{1}{2} \log \left(\frac{E + p_z}{E - p_z} \right)$$

rapidity

$$\eta = \frac{1}{2} \log \left(\frac{p + p_z}{p - p_z} \right)$$

- in the ultrarelativistic limit: $p \sim E \rightarrow \eta \sim y$
- for the transverse variables:

rapidity

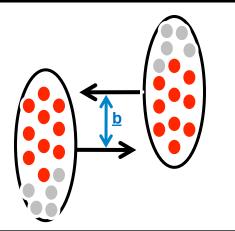
$$p_z = m_T \sinh(y)$$

 $E = m_T \cosh(y)$

pseudorapidity

$$p_z = p_T \sinh(\eta)$$
$$p = p_T \cosh(\eta)$$

it can be shown that:

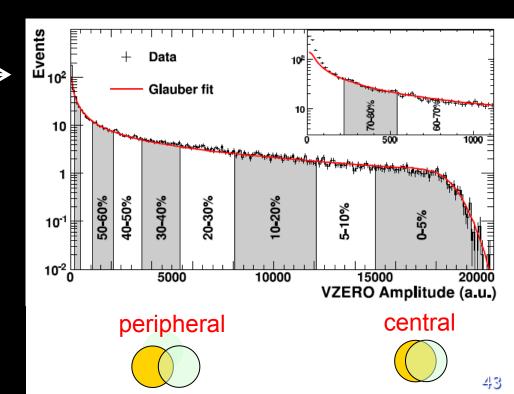

 $\eta = -\log \tan(\theta/2)$

- so for ultra-relativistic particles $(y \sim \eta)$
 - → rapidity only depends on emission angle

Contents

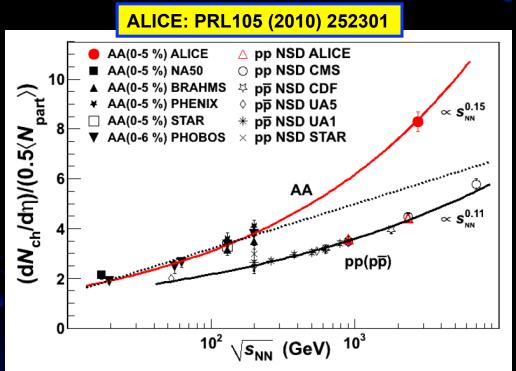
- Open puzzles in Quantum Chromo-Dynamics
- Confinement and deconfinement
 - (an "intuitive" view)
- Ultra-relativistic nucleus-nucleus collisions
- Intermezzo: the Large Hadron Collider
- Intermezzo: kinematic variables
- A few selected results
- Conclusions

Geometry of a Pb-Pb collision


central collisions

- small impact parameter b
- high number of participants \rightarrow high multiplicity
- peripheral collisions
 - large impact parameter b
 - low number of participants \rightarrow low multiplicity

for example: sum of the amplitudes in the ALICE V0 scintillators


reproduced by simple model (red):

- random relative position of nuclei in transverse plane
- Woods-Saxon distribution inside nucleus
- deviation at very low amplitude expected due to non-nuclear (electromagnetic) processes

Particle multiplicity

most central collisions at LHC: ~ 1600 charged particles per unit of η

- log extrapolation:
 - OK at lower energies
 - finally fails at the LHC

 $\sqrt{s_{NN}}$ =2.76 TeV Pb-Pb, 0-5% central, InI<0.5 dNch/dn / (<Npart>/2) = 8.3 ± 0.4 (sys.)

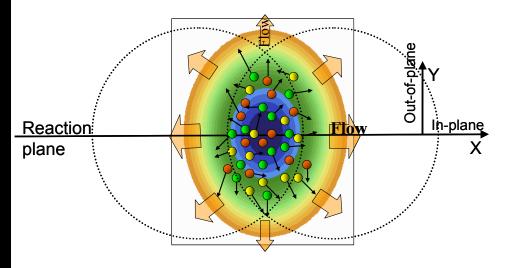
Bjorken's formula

To evaluate the energy density reached in the collision:

 $\mathcal{E} = \frac{1}{Sc\tau_0} \frac{dE_T}{dy} \bigg|_{v=0} \qquad S = \text{transverse dimension of nucleus} \\ \tau_0 = \text{"formation time"} \sim 1 \,\text{fm/}c$

for central collisions at LHC:

$$\left.\frac{dE_T}{dy}\right|_{y=o} \approx 1800 \,\mathrm{GeV}$$


- Initial time t_0 normally taken to be ~ 1 fm/c
 - i.e. equal to the "formation time": the time it takes for the energy initially stored in the field to materialize into particles
- Transverse dimension: $S \approx 160 \, \text{fm}^2$ $(R_A \approx 1.2 A^{1/3} \, \text{fm})$

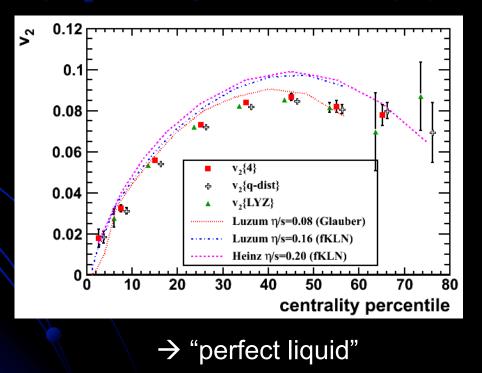
 $\rightarrow \varepsilon \sim (1800/160) \, \text{GeV/fm}^3 \sim 10 \, \text{GeV/fm}^3$

More than enough for deconfinement!

Elliptic Flow

Non-central collisions are azimuthally asymmetric

- → The transfer of this asymmetry to momentum space provides a measure of
 the strength of collective phenomena
- Large mean free path
 - particles stream out isotropically, no memory of the asymmetry
 - extreme: ideal gas (infinite mean free path)
- Small mean free path
 - larger density gradient -> larger pressure gradient -> larger momentum


• extreme: ideal liquid (zero mean free path, hydrodynamic limit) F Antinori - LNF - 4 ottobre 2017

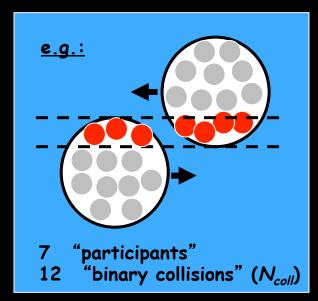
Azimuthal asymmetry

- to quantify the asymmetry:
 - \rightarrow Fourier expansion of the angular distribution:

 $\propto 1 + 2v_1 \cos(\varphi - \psi_1) + 2v_2 \cos(2[\varphi - \psi_2]) + \dots$

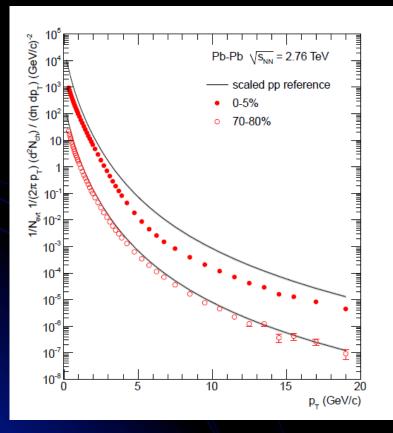
- in the central detector region ($\vartheta \sim 90^{\circ}$) $\rightarrow v_1 \sim 0 \rightarrow a$ symmetry quantified with v_2
- experimentally: $v_2 \sim as$ large as expected by hydrodynamics

High p_T suppression: R_{AA}

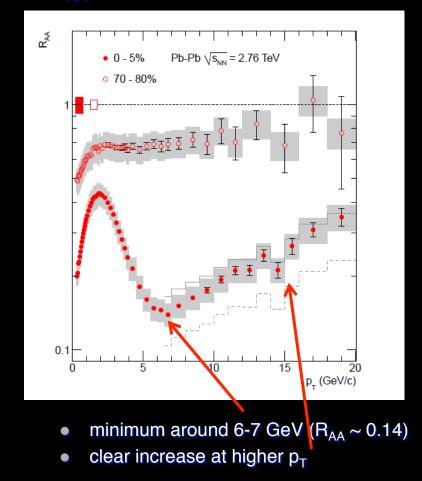

- production of particles at high p_T
- is expected to scale like the number of binary nucleon-nucleon collisions:

$$\frac{dN}{dp_T}\Big|_{AA} = \left\langle N_{coll} \right\rangle \frac{dN}{dp_T}\Big|_{pp}$$

- can be modified by "nuclear" effects
 - e.g.: particles can lose energy when traversing the QCD plasma fireball ("jet quenching")
 - \rightarrow suppression of particle production at high p_T
 - define a "nuclear modification factor" R_{AA}

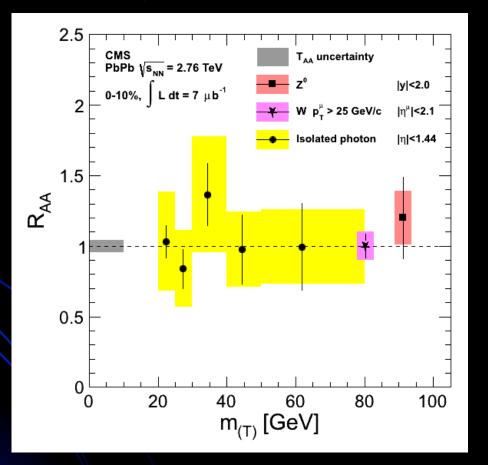

$$R_{AA} = \frac{\frac{dN}{dp_T}\Big|_{AA}}{\left\langle N_{coll} \right\rangle \frac{dN}{dp_T}\Big|_{pp}}$$

• in the absence of nuclear effects $\rightarrow R_{AA} = 1$

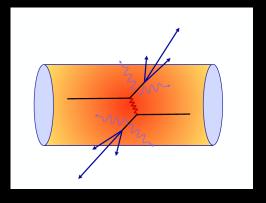


Strong suppression!

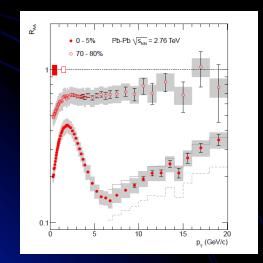
 Pb-Pb significantly below scaled pp for central collisions (filled points)



R_{AA}:


R_{AA} for vector bosons

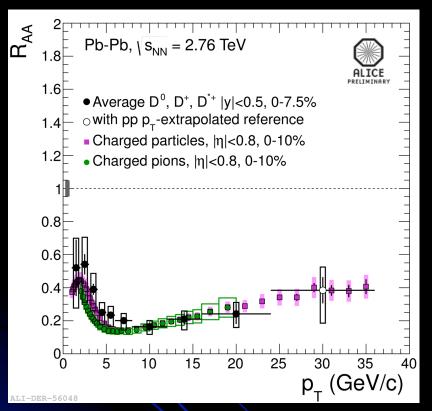
- electroweak probes (γ , W[±], Z⁰), on the other hand, are unmodified
- \rightarrow (essential cross check!)



Parton energy loss

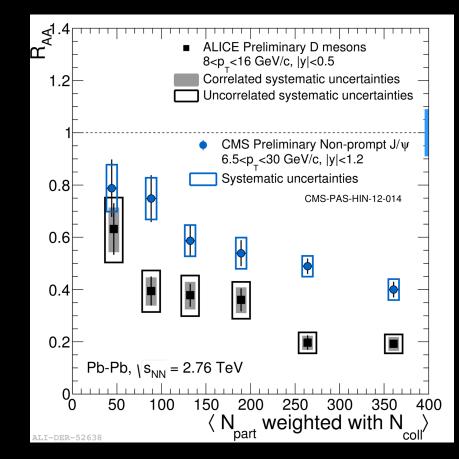
 partons (quarks, gluons) lose energy while traversing the QGP

> high-energy particles are suppressed


next step:

- study QGP with heavy probes: charm (c) m_c ~ 1.3 GeV beauty (b) (or bottom in the US) m_b ~ 4.3 GeV)
- analogous to Brownian Motion...
- study production of heavy-flavour hadrons (particles containing c or b quarks)

Quarks spin = 1/2		
Flavor	Approx. Mass GeV/c ²	Electric charge
U up	0.003	2/3
d down	0.006	-1/3
C charm	1.3	2/3
S strange	0.1	-1/3
t top	175	2/3
b bottom	4.3	-1/3


 \rightarrow D mesons (c quarks) and B mesons (b quarks)

Heavy Flavours R_{AA}

- p_T < 8 GeV/c:
 - hint of less suppression than for π?
- p_T > 8 GeV/c
 - same suppression as for π...

 + indication of less suppression for beauty than for charm!

Conclusions

- what have we acheved so far?
 - study of the QGP properties
 - first measurements of viscosity, couplings, diffusion coefficient..
 - discovery of new phenomena
 - observation of "hadronisation" by recombination of quarks
 - collective effects in smaller systems...

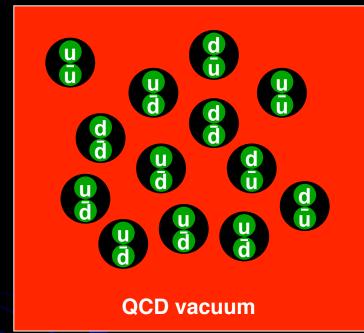
Conclusions

- what have we acheved so far?
 - study of the QGP properties
 - first measurements of viscosity, couplings, diffusion coefficient..
 - discovery of new phenomena
 - observation of "hadronisation" by recombination of quarks
 - collective effects in smaller systems...
- what next?
 - upgrades of LHC detectors (installation in 2019 2020)
 - high statistics campaign (2021 2029)
 - → comprehensive meausrement of physical properties of Quark-Gluon Plasma
 - → good potential for discoveries

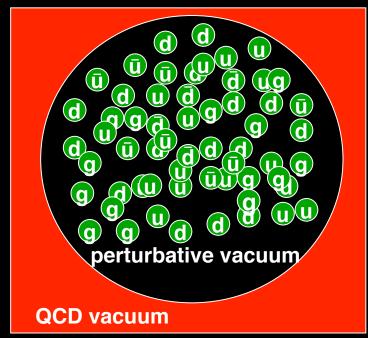
Conclusions

- what have we acheved so far?
 - study of the QGP properties
 - first measurements of viscosity, couplings, diffusion coefficient..
 - discovery of new phenomena
 - observation of "hadronisation" by recombination of quarks
 - collective effects in smaller systems...
- what next?
 - upgrades of LHC detectors (installation in 2019 2020)
 - high statistics campaign (2021 2029)
 - → comprehensive meausrement of physical properties of Quark-Gluon Plasma
 - → good potential for discoveries
- → S0...

... stay tuned!

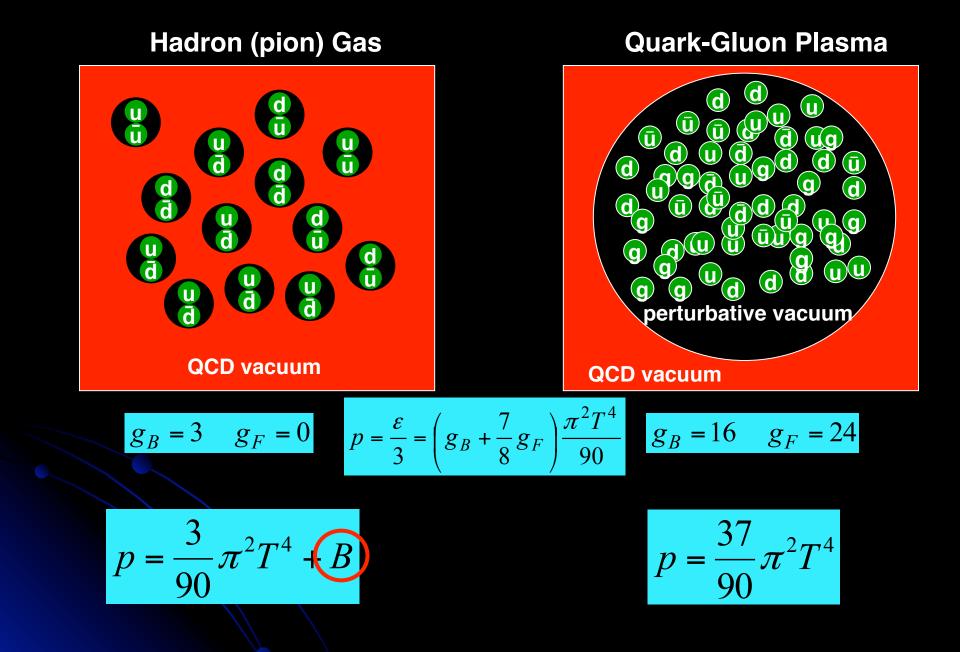

Run:244918 Timestamp:2015-11-25 11:25:36(UTC) System: Pb-Pb Energy: 5.02 TeV

Some bibliography

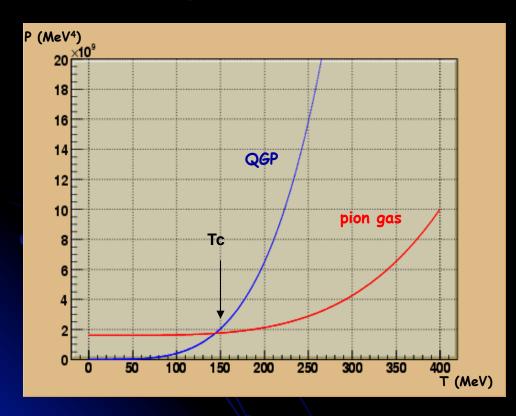

- D Perkins: Introduction to High Energy Physics, Cambridge University Press
- H Fritzsch: *Quarks*, Basic Books (English Edition)
- K Gottfried and V F Weisskopf: Concepts of Particle Physics, Oxford University Press (2 vol.)
- J Letessier and J Rafelski: *Hadrons and QGP*, Cambridge University Press
- C Y Wong, Introduction to High-Energy Heavy-Ion Collisions, World Scientific

Deconfinement: a toy model

Hadron (pion) Gas



Quark-Gluon Plasma



- Gibbs' criterion: the stable phase is the one with the largest pressure
- From statistical mechanics: (for an ideal gas)

$$p = \frac{\varepsilon}{3} = \left(g_B + \frac{7}{8}g_F\right)\frac{\pi^2 T^4}{90}$$

- At low temperature the hadron gas is the stable phase
- There is a temperature T_C above which the QGP "wins", thanks to the larger number of degrees of freedom

$$T_C = \left(\frac{90}{34 \, \pi^2}\right)^{1/4} B^{1/4}$$

 $\approx 150 \,\mathrm{MeV}$

- very simplified calculation...
 - more refined estimates:

 \rightarrow <u>Tc \approx 170 MeV</u>

- 170 MeV? recall: T_{room} (300 K) ~ 25 meV (of course, lowercase m)
- → Tc ≈ 170 MeV ≈ 2000 billion K
 (compare Sun core: 15 million K)