Measurement of the neutrino velocity with the OPERA detector in the CNGS beam **Dario Autiero** **IPN Lyon** On behalf of the OPERA Collaboration # The OPERA Collaboration 160 physicists, 30 institutions, 11 countries **Belgium IIHE-ULB Brussels** **Italy LNGS Assergi** Bari Korea Jinju Croatia **IRB Zagreb** Bologna LNF Frascati Salerno L'Aquila **Naples Padova** Rome INR RAS Moscow LPI RAS Moscow **ITEP Moscow** SINP MSU Moscow JINR Dubna **LAPP Annecy** **Germany** Hamburg France **IPNL** Lyon **IPHC Strasbourg** **Aichi** Toho Kobe Nagoya **Utsunomiya** **Switzerland** Bern **ETH Zurich** Israel **Technion Haifa** **Turkey** **METU Ankara** http://operaweb.lngs.infn.it/scientists/?lang=en We profited from the collaboration of individuals and groups that worked with us for the various metrology measurements reported here: CERN: CNGS, Survey, Timing and PS groups The geodesy group of the Università Sapienza of Rome The Swiss Institute of Metrology (METAS) The German Institute of Metrology (PTB) # Principle of the neutrino velocity measurement Definition of neutrino velocity: ratio of precisely measured baseline and time of flight #### Time of flight measurement: tagging of neutrino production time tagging of neutrino interaction time by a far detector accurate determination of the baseline (geodesy) expected small effects: long baseline required blind analysis: "box" opened after adequate level of systematic errors was reached ## Past experimental results FNAL experiment (Phys. Rev. Lett. 43 (1979) 1361) high energy ($E_v > 30$ GeV) short baseline experiment. Tested deviations down to $|v-c|/c| \le 4 \times 10^{-5}$ (comparison of muon-neutrino and muon velocities). SN1987A (see e.g. Phys. Lett. B 201 (1988) 353) electron (anti) neutrinos, 10 MeV range, 168'000 light years baseline. $|v-c|/c \le 2 \times 10^{-9}$. Performed with observation of neutrino and light arrival time. MINOS (Phys. Rev. D 76 072005 2007) muon neutrinos, 730 km baseline, E_v peaking at ~3 GeV with a tail extending above 100 GeV. $(v-c)/c = 5.1 \pm 2.9 \times 10^{-5} (1.8 \sigma).$ #### THE DESIGN OF THE OPERA EXPERIMENT # ECC BRICKS + ELECTRONIC DETECTORS FOR $\nu_{\mu} \rightarrow \nu_{\tau}$ OSCILLATION STUDIES # THE IMPLEMENTATION OF THE PRINCIPLE Target area Muon spectrometer # The Target Tracker (TT) pre-location of neutrino interactions and event timing - Extruded plastic scintillator strips (2.6 cm width) - Light collections with WLS fibres - Fibres read out at either side with multi-anode 64 pixels PMTs (H7546) Read out by 1 Front-End DAQ board per side ## **OPERA** readout scheme Trigger-less, asynchronous Front-End nodes (1200); Gigabit Ethernet network #### Clock distribution system (10 ns UTC event time-stamp granularity) Mezzanine DAQ card common to all sub-detectors Front End nodes: CPU (embedded LINUX), Memory, FPGA, clock receiver and ethernet #### "INTERNAL" and "EXTERNAL" OPERA EVENTS D. Autiero - CERN - 23 September 2011 # The LNGS underground physics laboratory D. Autiero - CERN - 23 September 2011 #### THE CNGS neutrino beam - SPS protons: 400 GeV/c - Cycle length: 6 s - Two 10.5 μs extractions (by kicker magnet) separated by 50 ms - Beam intensity: 2.4 10¹³ proton/extraction - ~ pure muon neutrino beam (<E> = 17 GeV) travelling through the Earth's crust #### CNGS events selection Offline coincidence of SPS proton extractions (kicker time-tag) and OPERA events $$|T_{OPERA} - (T_{Kicker} + TOFc)| < 20 \mu s$$ Synchronisation with standard GPS systems ~100 ns (inadequate for our purposes) Real time detection of neutrino interactions in target and in the rock surrounding OPERA D. Autiero - CERN - 23 September 2011 #### **CNGS** events selection OPERA data: narrow peaks of the order of the spill width (10.5 μs) Negligible cosmic-ray background: O(10⁻⁴) Selection procedure kept unchanged since first events in 2006 #### From CNGS event selection to neutrino velocity measurement Typical neutrino event time distributions in 2008 w.r.t kicker magnet trigger pulse: - 1) Not flat - 2) Different timing for first and second extraction → Need to precisely measure the protons spills # GPS clocks at LNGS w.r.t. Cs clock: - 1) Large oscillations - 2) Uncertainties on CERN-OPERA synchronisation → Need accurate time synchronisation system Collaboration with CERN timing team since 2003 Major upgrade in 2008 # **OPERA** sensitivity - High neutrino energy high statistics ~16000 events - Sophisticated timing system: ~1 ns CNGS-OPERA synchronisation - Accurate calibrations of CNGS and OPERA timing chains: ~ 1 ns level - Precise measurement of neutrino time distribution at CERN through proton waveforms - Measurement of baseline by global geodesy: 20 cm accuracy over 730 km - → Result: ~10 ns overall accuracy on TOF with similar stat. and sys. errors # **CNGS-OPERA** synchronization Standard GPS receivers ~100 ns accuracy: CERN Symmetricom XLi (source of General Machine Timing) LNGS: ESAT 2000 2008: installation of a twin high accuracy system calibrated by METAS (Swiss metrology institute) Septentrio GPS PolaRx2e + Symmetricom Cs-4000 #### PolaRx2e: - frequency reference from Cs clock - internal time tagging of 1PPS with respect to individual satellite observations - offline common-view analysis in CGGTTS format - use ionosphere free P3 code Standard technique for high accuracy time transfer Permanent time link (~1 ns) between reference points at CERN and OPERA #### GPS common-view mode #### Standard GPS operation: resolves x, y, z, t with \geq 4 satellite observations Common-view mode (the same satellite for the two sites, for each comparison): x, y, z known from former dedicated measurements: determine time differences of local clocks (both sites) w.r.t. the satellite, by offline data exchange 730 km << 20000 km (satellite height) → similar paths in ionosphere D. Autiero - CERN - 23 September 2011 # Result: TOF time-link correction (event by event) 23 #### CERN-OPERA inter-calibration cross-check Independent twin-system calibration by the Physikalisch-Technische Bundesanstalt High accuracy/stability portable timetransfer setup @ CERN and LNGS GTR50 GPS receiver, thermalised, external Cs frequency source, embedded Time Interval Counter #### Correction to the time-link: $t_{CERN} - t_{OPERA} = (2.3 \pm 0.9) \text{ ns}$ # Proton timing by Beam Current Transformer Fast BCT 400344 (~ 400 MHz) #### Proton pulse digitization: - Acqiris DP110 1GS/s waveform digitizer (WFD) - WFD triggered by a replica of the kicker signal - Waveforms UTC-stamped and stored in CNGS database for offline analysis ## Proton spill shape Reminiscence of the Continuous Turn extraction from PS (5 turns) SPS circumference = 11 x PS circumference: SPS ring filled at 10/11 Shapes varying with time and both extractions → Precise accounting with WFD waveforms: more accurate than: e.g. average neutrino distribution in a near detector 26 #### Neutrino event-time distribution PDF - Each event is associated to its proton spill waveform - The "parent" proton is unknown within the 10.5 μs extraction time - → normalized waveform sum: PDF of predicted time distribution of neutrino events - → compare to OPERA detected neutrino events different timing w.r.t. kicker magnet signal # Neutrino production point Unknown neutrino production point: $$\Delta t = \frac{z}{\beta c} - \frac{z}{c} = \frac{z}{c} \left(\frac{1}{\beta} - 1 \right) \approx \frac{z}{c} \frac{1}{2\gamma^2}$$ 1)accurate UTC time-stamp of protons2)relativistic parent mesons (full FLUKA simulation) $TOF_c = assuming c from BCT to OPERA (2439280.9 ns)$ TOF_{true} = accounting for speed of mesons down to decay point $$\Delta t = TOF_{true} - TOF_{c}$$ $$\langle \Delta t \rangle = 1.4 \times 10^{-2} \, \text{ns}$$ # Summary of the principle for the TOF measurement Measure $\delta t = TOF_c - TOF_v$ # Geodesy at LNGS Dedicated measurements at LNGS: July-Sept. 2010 (Rome Sapienza Geodesy group) 2 new GPS benchmarks on each side of the 10 km highway tunnel **GPS** measurements ported underground to **OPERA** # Combination with CERN geodesy CERN –LNGS measurements (different periods) combined in the ETRF2000 European Global system, accounting for earth dynamics (collaboration with CERN survey group) | Benchmark | X (m) | Y (m) | Z (m) | |-----------|-------------|-------------|-------------| | GPS1 | 4579518.745 | 1108193.650 | 4285874.215 | | GPS2 | 4579537.618 | 1108238.881 | 4285843.959 | | GPS3 | 4585824.371 | 1102829.275 | 4280651.125 | | GPS4 | 4585839.629 | 1102751.612 | 4280651.236 | LNGS benchmarks In ETRF2000 Cross-check: simultaneous CERN-LNGS measurement of GPS benchmarks, June 2011 Resulting distance (BCT – OPERA reference frame) (731278.0 ± 0.2) m # LNGS position monitoring Monitor continent drift and important geological events (e.g. 2009 earthquake) # Time calibration techniques Start Delay T_A ? End #### • Portable Cs-4000: Comparison: time-tags vs 1PPS signal (Cs clock) at the start- and end-point of a timing chain #### • Double path fibers measurement: by swapping Tx and Rx component of the opto-chain # BCT calibration (1) #### Dedicated beam experiment: BCT plus two pick-ups (~1 ns) with LHC beam (12 bunches, 50 ns spacing) $$\Delta t_{BCT} = t4 - t3 = (580 \pm 5) \text{ ns}$$ t3: derived by t1 - t2 measurement and survey # BCT calibration (2) result: signals comparison after $\Delta_{\rm BCT}$ compensation # TT time response measurement Scintillator, WLS fibers, PMT, analog FE chip (ROC) up to FPGA trigger input UV laser excitation: → delay from photo-cathode to FPGA input: 50.2 ± 2.3 ns Average event time response: 59.6 ± 3.8 ns (sys) (including position and p.h. dependence, ROC time-walk, DAQ quantization effects accounted by simulations) D. Autiero - CERN - 23 September 2011 # Delay calibrations summary | ltem | Result | Method | | |--|---------------|--|--| | CERN UTC distribution (GMT) | 10085 ± 2 ns | Portable CsTwo-ways | | | WFD trigger | 30 ± 1 ns | Scope | | | BTC delay | 580 ± 5 ns | Portable CsDedicated beam experiment | | | LNGS UTC distribution (fibers) | 40996 ± 1 ns | Two-waysPortable Cs | | | OPERA master clock distribution | 4262.9 ± 1 ns | Two-waysPortable Cs | | | FPGA latency, quantization curve | 24.5 ± 1 ns | Scope vs DAQ delay scan (0.5 ns steps) | | | Target Tracker delay (Photocathode to FPGA) | 50.2 ± 2.3 ns | UV picosecond laser | | | Target Tracker response (Scintillator-Photocathode, trigger time-walk, quantisation) | 9.4 ± 3 ns | UV laser, time walk and photon arrival time parametrizations, full detector simulation | | | CERN-LNGS intercalibration | 2.3 ± 1.7 ns | METAS PolaRx calibrationPTB direct measurement | | # Continuous two-way measurement of UTC delay at CERN (variations w.r.t. nominal) # Event selection (earliest TT hit of the event as "stop") Statistics: 2009-2010-2011 CNGS runs (~10²⁰ pot) #### Internal events: Same selection procedure as for oscillation searches: 7586 events #### **External events:** Rock interaction → require muon 3D track: 8525 events (Timing checked with full simulation, 2 ns systematic uncertainty by adding external events) Data/MC agree for 1st hit timing (within systematics) 42 ### **Event time corrections** Time-link correction (blue points) Correction due to the earliest hit position average correction: 140 cm (4.7 ns) 43 # Analysis method For each neutrino event in OPERA → proton extraction waveform Sum up and normalise: \rightarrow PDF w(t) \rightarrow separate likelihood for each extraction $$L_k(\delta t_k) = \prod_j w_k(t_j + \delta t_k)$$ k=1,2 extractions #### Maximised versus δt: $$\delta t = TOF_c - TOF_v$$ Positive (negative) $\delta t \rightarrow$ neutrinos arrive earlier (later) than light statistical error evaluated from log likelihood curves # Blind analysis Analysis deliberately conducted by referring to the obsolete timing of 2006: - 1) Wrong baseline, referred to an upstream BCT in the SPS, ignoring accurate geodesy - 2) Ignoring TT and DAQ time response in OPERA - 3) Using old GPS inter-calibration prior to the time-link - 4) Ignoring the BCT and WFD delays - 5) Ignoring UTC calibrations at CERN - \rightarrow Resulting δt by construction much larger than individual calibration contributions ~ 1000 ns - → "Box" opened once all correction contributions reached satisfactory accuracy ### Data vs PDF: before and after likelihood result (BLIND) $\delta t = TOF_c - TOF_v =$ (1048.5 ± 6.9) ns (stat) χ^2 / ndof : first extraction: 1.06 second extraction: 1.12 # Zoom on the extractions leading and trailing edges # Analysis cross-checks 1) Coherence among CNGS runs/extractions 2) No hint for *e.g.* daynight or seasonal effects: |d-n|: (17.1 ± 15.5) ns |(spring+fall) - summer|: (11.3 ± 14.3) ns 3) Internal vs external events: All events: δt (blind) = TOF_c - TOF_v = (1048.5 ± 6.9 (stat.)) ns Internal events only: (1047.4 ± 11.2 (stat.)) ns # Opening the box # timing and baseline corrections | | Blind 2006 | Final analysis | Correction (ns) | |---|------------|----------------|-----------------| | Baseline (ns) | 2440079.6 | 2439280.9 | | | Correction baseline | | | -798.7 | | CNGS DELAYS : | | | | | UTC calibration (ns) | 10092.2 | 10085 | | | Correction UTC | | | -7.2 | | WFD (ns) | 0 | 30 | | | Correction WFD
BCT (ns) | 0 | -580 | 30 | | Correction BCT | U | -360 | -580 | | 001100001111111111111111111111111111111 | | | 000 | | OPERA DELAYS : | | | | | TT response (ns) | 0 | 59.6 | | | FPGA (ns) | 0 | -24.5 | | | DAQ clock (ns) | -4245.2 | -4262.9 | | | Correction TT+FPGA+DAQ | | | 17.4 | | GPS syncronization (ns) | -353 | 0 | | | Time-link (ns) | 0 | -2.3 | | | Correction GPS | | | 350.7 | | Total | | | -987.8 | # systematic uncertainties | Systematic uncertainties | ns | |-----------------------------------|------| | Baseline (20 cm) | 0.67 | | Decay point | 0.2 | | Interaction point | 2 | | UTC delay | 2 | | LNGS fibres | 1 | | DAQ clock transmission | 1 | | FPGA calibration | 1 | | FWD trigger delay | 1 | | CNGS-OPERA GPS synchronization | 1.7 | | MC simulation (TT timing) | 3 | | TT time response | 2.3 | | BCT calibration | 5 | | | | | Total uncertainty (in quadrature) | 7.4 | D. Autiero - CERN - 23 September 2011 ### Results For CNGS v_{μ} beam, $\langle E \rangle = 17$ GeV: $$\delta t = TOF_c - TOF_v =$$ $(1048.5 \pm 6.9 \text{ (stat.)}) \text{ ns} - 987.8 \text{ ns} = (60.7 \pm 6.9 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns}$ relative difference of neutrino velocity w.r.t. c: $$(v-c)/c = \delta t / (TOF_c - \delta t) = (2.49 \pm 0.28 \text{ (stat.)} \pm 0.30 \text{ (sys.)}) \times 10^{-5}$$ (730085 m used as neutrino baseline from parent mesons average decay point) 6.0σ significance # Study of the energy dependence • Only internal muon-neutrino CC events used for energy measurement (5489 events) $$(\mathsf{E} = \mathsf{E}_{\mu} + \mathsf{E}_{\mathsf{had}})$$ - Full MC simulation: no energy bias in detector time response (<1 ns) - → systematic errors cancel out $\delta t = TOF_c - TOF_v = (60.3 \pm 13.1 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns for } <E_v > = 28.1 \text{ GeV}$ (result limited to events with measured energy) #### No clues for energy dependence within the present sensitivity in the energy domain explored by the measurement # Conclusions (1) - The OPERA detector at LNGS in the CERN CNGS muon neutrino beam has allowed the most sensitive terrestrial measurement of the neutrino velocity over a baseline of about 730 km. - The measurement profited of the large statistics accumulated by OPERA (~16000 events), of a dedicated upgrade of the CNGS and OPERA timing systems, of an accurate geodesy campaign and of a series of calibration measurements conducted with different and complementary techniques. - The analysis of data from the 2009, 2010 and 2011 CNGS runs was carried out to measure the neutrino time of flight. For CNGS muon neutrinos travelling through the Earth's crust with an average energy of 17 GeV the results of the analysis indicate an early neutrino arrival time with respect to the one computed by assuming the speed of light: $$\delta t = TOF_c - TOF_v = (60.7 \pm 6.9 \text{ (stat.)} \pm 7.4 \text{ (sys.)}) \text{ ns}$$ • We cannot explain the observed effect in terms of known systematic uncertainties. Therefore, the measurement indicates a neutrino velocity higher than the speed of light: $$(v-c)/c = \delta t / (TOF_c - \delta t) = (2.48 \pm 0.28 \text{ (stat.)} \pm 0.30 \text{ (sys.)}) \times 10^{-5}$$ with an overall significance of 6.0σ . # Conclusions (2) - A possible δt energy dependence was also investigated. In the energy domain covered by the CNGS beam and within the statistical accuracy of the measurement we do not observe any significant effect. - Despite the large significance of the measurement reported here and the stability of the analysis, the potentially great impact of the result motivates the continuation of our studies in order to identify any still unknown systematic effect. - We do not attempt any theoretical or phenomenological interpretation of the results.