# Analisi Dati (Esperimento KLOE)



Analisi cinematica del decadimento dei mesoni K carichi con i dati dell'esperimento KLOE



M. Palutan B. Sciascia

#### Incontri di Fisica 2007 Laboratori Nazionali di Frascati

### Il collisore DA $\Phi$ NE





$$E^+ = E^- = 510 \text{ MeV}$$
  
 $E_{\text{tot}}(\text{CM}) \approx 1019.5 \text{ MeV} = M_{\phi}$ 

# Unità di misura per energia, massa, impulso

Misura comoda per l'energia di un elettrone:



*Elettronvolt* (eV)

Energia di un elettrone accelerato da un potenziale di 1 volt

Useremo più spesso: keV, MeV, GeV

Quanto "pesa" un elettrone?

 $9.11 \times 10^{-31} \text{ kg}$ 

Rapporto tra massa di una particella e la sua energia da ferma:

 $E = mc^2$ 

La massa si può esprimere in unità di energia:  $MeV/c^2$ 

Quanto pesa un elettrone? 0.511 MeV/c<sup>2</sup>

Spesso tralasciamo la c e parliamo di energie, impulsi e masse in MeV

#### Produzione e decadimento del mesone $\phi$



Il mesone  $\phi$  è instabile, e decade in un tempo  $\tau =$  $1.6 \times 10^{-22}$  s, creando stati finali con altre particelle (mesoni **K**, mesoni  $\pi$ ); I modi di decadimento dominanti sono:

1)  $\phi \rightarrow K^+K^-$  49.1 % 2)  $\phi \rightarrow \overline{K}{}^0K^0$  34.1 %

# Mesoni e barioni



Tutti le particelle di materia hanno:

- spin
- antiparticelle di carica opposta
- I quark possiedono anche carica di colore Gli stati legati (*adroni*) sono di colore neutro



## Interazioni fondamentali ---- decadimenti





### Decadimento dei mesoni $K^+$ e $K^-$

I decadimenti del *K* avvengono per effetto dell'interazione debole in un tempo  $\tau = 1.2 \times 10^{-8}$  s; scopo della nostra esercitazione è l'identificazione dei decadimenti a due corpi Decadimenti del  $K^+$ 

| Modo                              | Prob (%) |
|-----------------------------------|----------|
| $K^+ \rightarrow \mu^+ \nu_\mu$   | 63.43    |
| $K^+ \rightarrow \pi^+ \pi^0$     | 21.13    |
| $K^+ \rightarrow 3 \text{ corpi}$ | 15.44    |



# Evento $\phi \rightarrow K^+ K^- \rightarrow \mu^+ \nu_{\mu} \pi^- \pi^0$ in KLOE

 Le particelle cariche vengono "tracciate" nella zona centrale del rivelatore (*camera a deriva*).

2) L'involucro esterno (*calorimetro*) misura l'energia rilasciata dalle particelle (neutre e cariche), e il tempo.



### La camera a deriva di KLOE



### Tracciamento di particelle cariche



- Si ricostruiscono i raggi di deriva dei fili colpiti (gli *hits*) in base ai relativi tempi
- 2. Si raccolgono gli *hits* che appartengono alle stesse tracce in *pattern*
- 3. Si disegnano le tracce e si individuano i vertici.



## Il calorimetro KLOE







# Calorimetri elettromagnetici: un esempio



# Il calorimetro KLOE





Misura dell'energia:  $\sigma_E / E = 5.7\% / \sqrt{E}$ 

Misura del tempo:  $\sigma_t = (57/\sqrt{E \oplus 150}) \text{ ps}$ 

(E in GeV)

### Cinematica: trasformazione di Galileo



Quale è la velocità della macchina nel sistema 
$$\Sigma^*$$
?

$$v^* = v - V$$

Impulso:  

$$p = mv$$

$$p^* = mv^* = m(v - V)$$
Energia cinetica:  

$$T = mv^{2/2}$$

$$T^* = mv^{*2/2} = m(v - V)^{2}$$

### Cinematica: trasformazione di Lorentz



$$\beta = v/c$$

$$\gamma = \frac{1}{\sqrt{1 - \beta^2}}$$

Sistema  $\Sigma$ : Energia EImpulso р Velocità  $\beta = p/E$  Sistema  $\Sigma^*$ :

Energia  $E^* = \Gamma(E - Bp)$ Impulso  $p^* = \Gamma(p - BE)$ Velocità  $\beta^* = p^*/E^* = \beta - B$  $1 - \beta B$ 

### Relatività ristretta: energia e impulso





Da cui, ponendo c=1, si ricava:

$$E^2 = p^2 + m^2$$
Energia dall'impulso
Energia da fermo

### Vettori

$$\mathbf{p} = \begin{pmatrix} p_x \\ p_y \\ p_z \end{pmatrix}$$

Prodotto scalare:

 $\mathbf{p}_{1} \bullet \mathbf{p}_{2} = p_{1x}p_{2x} + p_{1y}p_{2y} + p_{1z}p_{2z}$ 

Modulo:

$$\mathbf{p} \bullet \mathbf{p} = \mathbf{p}^2 = |p|^2$$



il modulo dell'impulso ha lo stesso valore visto da ogni angolo

# Quadrivettori

$$p = \begin{pmatrix} E \\ p_x \\ p_y \\ p_z \end{pmatrix}$$

$$p_1 \bullet p_2 = \\ E_1 E_2 - p_{1x} p_{2x} - p_{1y} p_{2y} - p_{1z} p_{2z}$$

$$p \bullet p = E^2 - \mathbf{p}^2 = m^2$$

la massa da ferma della particelle ha lo stesso valore in ogni sistema  $\sum^{m} p, E$  $p^{*}, E^{*}$ 

### Decadimenti

Energia totale conservata Impulso conservato componente per componente

$$\Sigma E_{i} = \Sigma E_{f}$$
$$\Sigma p_{xi} = \Sigma p_{xf}$$
$$\Sigma p_{yi} = \Sigma p_{yf}$$
$$\Sigma p_{zi} = \Sigma p_{zf}$$



Quanta massa ha la particella che decade? E' facile da calcolare nel CM:

CM (
$$\Sigma^*$$
)  $m_1$ ,  $\mathbf{p}_1^*$   
M?  $m_2$ ,  $\mathbf{p}_2^*$ 

$$E_{i} = M \qquad E_{f} = E_{1}^{*} + E_{2}^{*}$$
  

$$\mathbf{p}_{i} = 0 \qquad \mathbf{p}_{1}^{*} = -\mathbf{p}_{2}^{*} = \mathbf{p}_{f}^{*}$$
  

$$(p_{1}^{*} + p_{2}^{*})_{x,y,z} = 0$$

 $E_1^* + E_2^* = M$ 

### La massa invariante





Possiamo anche usare quadrivettori: Definiamo  $P^* = (p_1^* + p_2^*)$ 

$$P^{*2} = (E_1^* + E_2^*)^2 - (\mathbf{p}_1^* + \mathbf{p}_2^*)^2 = M^2$$

Se conosciamo solo  $\mathbf{p}_1$ ,  $\mathbf{p}_2$  nel LAB? Possiamo trasformare  $\mathbf{p}_1$ ,  $\mathbf{p}_2$  in  $\mathbf{p}_1^*$ ,  $\mathbf{p}_2^*$ Troppo complesso!

Usiamo il prodotto scalare, che può essere valutato sia nel CM che nel LAB:

$$P^{*2} = M^2 = (p_1 + p_2)^2 = (E_1 + E_2)^2 - (\mathbf{p}_1 + \mathbf{p}_2)^2$$

Calcolato nel CM

Calcolato nel LAB

Massa invariante:  $M^2 = (\Sigma E)^2 - (\Sigma p)^2$ 

### La massa mancante



A volte non è possibile osservare tutti i prodotti del decadimento

$$(\Sigma p)_{i} = (\Sigma p)_{f} \qquad p_{?}^{2} = (P - p_{1} - p_{2})^{2}$$
$$P = p_{1} + p_{2} + p_{?} \qquad m_{?}^{2}$$

e: 
$$M_{?}^{2} = (\Sigma P_{i} - \Sigma P_{f})^{2}$$
  
=  $(\Sigma E_{i} - \Sigma E_{f})^{2} - (\Sigma \mathbf{p}_{i} - \Sigma \mathbf{p}_{f})^{2}$ 

1. Assumiamo di non vedere i fotoni:  
Quale è la massa del 
$$\pi^0$$
?

$$m_0^2 = p_0^2 = (P - p_+)^2$$

2. Assumiamo di vedere solo i fotoni: Quale è la massa del  $\pi^0$ ?

$$p_0^2 = (p_1 + p_2)^2 = 2E_1E_2(1 - \cos\theta_{12})$$

# Il campione dei dati



 Ogni *evento* selezionato ha 2 mesoni K carichi prodotti da un decadimento della φ .
 Nell'85% dei casi, il mesone K<sup>+</sup> decade in μ<sup>+</sup>ν *oppure* in π<sup>+</sup>π<sup>0</sup>.

3) Nel campione di dati da analizzare troveremo, *per ogni evento*, i parametri misurati dal rivelatore relativamente *ad uno solo* degli emisferi dell'evento (K<sup>+</sup> o K<sup>-</sup>):

- **pk(3)** componenti x,y,z dell'impulso del K

- pd(3) componenti x,y,z
dell'impulso della *particella carica figlia del K*

# Il campione dei dati (2)



#### - pd\_mu(3), pd\_pi(3)

componenti x,y,z dell'impulso della particella figlia (che il piu' delle volte e' un  $\pi$  carico o un  $\mu$ ) nel sistema di riferimento del K, che si muove nel LAB con velocità  $\beta_K c = |p_K|/E_K$ ; nel calcolo della TL (p\* =  $\Gamma(p - BE)$ ), con  $E = (p^2 + m^2)^{1/2}$  sono tentate due ipotesi

di massa per la particella figlia:  $m_{\mu} e m_{\pi}$ .

#### - pg1(3), pg2(3)

componenti x,y,z dell'impulso delle due particelle neutre (*se esistono*) compatibili con l'essere fotoni provenienti dal vertice di decadimento del K carico ( $\Delta t=\Delta r/c$ ) 1) Calcolare il modulo dell'impulso del K nel LAB:  $|\mathbf{pk}| = \operatorname{sqrt}(\operatorname{pk}(1)^{**}2 + \operatorname{pk}(2)^{**}2 + \operatorname{pk}(3)^{**}2)$ 

**2)** Calcolare il modulo dell'impulso della particella figlia nel LAB e nel sistema di quiete (CM) del K:

 $|\mathbf{pd}| = \operatorname{sqrt}(\operatorname{pd}(1)^{**}2 + \operatorname{pd}(2)^{**}2 + \operatorname{pd}(3)^{**}2); |\mathbf{pd}_{\mathbf{mu}}| = \dots$ E' possibile utilizzare questi spettri di impulso per identificare i decadimenti  $K^{\pm} \rightarrow \mu^{\pm} \nu$  e  $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ ?

**3)** Calcolare la massa mancante al vertice di decadimento del K, e confrontarla con quanto ci aspettiamo per la massa della particella figlia neutra nei decadimenti  $K^{\pm} \rightarrow \mu^{\pm} \nu$  e  $K^{\pm} \rightarrow \pi^{\pm} \pi^{0}$ :

$$M_{miss}^2 = (Ek-Ed)^{**2} - \sum_{i=1,3} (pk(i)-pd(i))^{**2}$$

E' necessaria un'ipotesi di massa per la particella figlia?

4) Calcolare la massa invariante dei fotoni (se presenti) provenienti dal vertice di decadimento del K e verificare che essa sia compatibile con la massa del  $\pi^0$ :

$$m_{\gamma\gamma} = \operatorname{sqrt}(2E_1E_2(1 - \cos \theta_{12}))$$
  
E1 = |**pg1**| = sqrt(pg(1)\*\*2+pg(2)\*\*2+pg(3)\*\*2)  
cos  $\theta_{12}$  = **pg1• pg2**/(|**pg1**| |**pg2**| )

**5)** Confrontare la massa invariante dei fotoni con la misura di massa mancante al vertice.

**6)** Calcolare la massa invariante del mesone K a partire dagli impulsi dei prodotti di decadimento del K stesso

# Vus from BR( $K^+ \rightarrow \mu^+ \nu(\gamma)$ )

- Tag from  $K^- \rightarrow \mu^- \nu$ ; to reduce the tag bias, tag selection requires EMC trigger.
- 2002 data set: 1/3 used for signal selection, 2/3 used as efficiency sample
- Count events in (225,400) MeV  $p_{\pi}^*$  window after the subtraction of  $\pi^0$  identified background.
- Selection efficiency measured on data.
- Radiated  $\gamma$  acceptance measured on MC.



 $BR(K^+ \rightarrow \mu^+ \nu(\gamma)) = 0.6366 \pm 0.0009_{stat.} \pm 0.0015_{syst.}$ 0.644 Following Marciano hep-ph/0406324 : 0.642 •  $\Gamma(K \rightarrow \mu \nu(\gamma)) / \Gamma(\pi \rightarrow \mu \nu(\gamma)) \propto |V_{us}|^2 / |V_{ud}|^2 f_K^2 / f_\pi^2$ 0.64 0.638 • From lattice calculations:  $f_{\rm K}/f_{\pi} = 1.210 \pm 0.014$ 0.636 PDG fit (MILC Coll. hep-lat/0407028) 0.634 •  $V_{ud}$ =0.9740±0.0005 (superallowed  $\beta$ -decays) 0.632 0.63 0.628  $V_{\text{us}} = 0.2223 \pm 0.0025$  KLOE preliminary 0.626 Chiana 1972 **KLOE 2005** 



|     | $K_L e3$ | <i>К<sub>L</sub></i> µЗ | K <sub>s</sub> e3 | K±e3   | <i>К</i> ±µ3 |
|-----|----------|-------------------------|-------------------|--------|--------------|
| BR  | 0.4007   | 0.2698                  | 0.00709           | 0.0505 | 0.0331       |
| δBR | 0.0018   | 0.0012                  | 0.00009           | 0.0004 | 0.0005       |

Fitting the 5  $|V_{us}f_{+}(0)|$  KLOE determinations:  $\chi^2/dof=1.7/4$ Using also KTeV inputs,  $V_{us}f_{+}(0)$  becomes 0.2172(4)



# Riserva

# I mesoni e il modello dei quark



Le periodicità delle proprietà chimiche degli elementi portò alla comprensione dei loro costituenti

Lo stesso è accaduto con le particelle elementari



# Richiami sul modello standard: materia

#### i Leptoni

$$q = -1$$
  $e$   $\mu$   $\tau$   
 $q = 0$   $\nu_e$   $\nu_\mu$   $\nu_\tau$ 

- I leptoni non possiedono colore e quindi non partecipano alle interazioni forti
- I neutrini non hanno carica elettrica e interagiscono soltanto tramite la forza debole

I neutrini hanno massa?

 $\sum_{e\,\mu\,\tau} m_{\nu} < 2.7 \text{ eV}$ 

Limite necessario per spiegare la distribuzione della radiazione di fondo nell'Universo tramite la cosmologia

# Richiami sul modello standard: forze



Sviluppo cronologico dell'Universo della fisica

### Il modello standard e i grafici di Feynman



Non solo consentono di visualizzare un'interazione Facilitano anche il calcolo di  $\mathcal{M}$ :

- La probabilità di
- decadimento
- interazione
- è proporzionale a  $\mathcal{M}^2$

 $\mathcal{M} \propto$ 

$$\int \left[ \underline{u}(p_3) i g \gamma^{\mu} v(p_4) \right] \frac{-i g_{\mu\nu}}{q^2} \left[ \underline{v}(p_2) i g \gamma^{\nu} u(p_1) \right] \times \\ \delta^4(p_1 + p_2 - q) \, \delta^4(q - p_3 - p_4) \, d^4q$$

### Produzione del mesone $\phi$ in collisioni $e^+e^-$



### Il mesone $\phi$



Processo OZI-soppresso:





Decadimenti della  $\phi$ 

| Modo                                           | Prob (%)            |  |
|------------------------------------------------|---------------------|--|
| $\phi \rightarrow K^+ K^-$                     | 49.1                |  |
| $\phi \twoheadrightarrow K^0 \overline{K}{}^0$ | 34.1                |  |
| $\phi \rightarrow \pi^+ \pi^- \pi^0$           | 15.5                |  |
| $\phi \twoheadrightarrow e^+e^-$               | 3.10-4              |  |
| $\phi \rightarrow \mu^+ \mu^-$                 | $2.5 \cdot 10^{-4}$ |  |

Processo OZI-favorito:





# L'esperimento KLOE



**Camera a deriva** Diametro: 4 m Lunghezza: 3.3 m Gas: 90% elio, 10% isobutano

52140 fili (12582 sensibili)

**Calorimetro elettromagnetico** Matrice di piombo e fibre scintillanti Peso: più di 100 tonnellate 4880 canali di lettura (PMT)

**Bobina superconduttrice** Diametro: 5 m B = 0.52 T ( $\int B dl = 2$  T·m)

Sezione longitudinale

### Particelle cariche: la camera a deriva



La particella passa e ionizza il gas nella camera Un'altro rivelatore registra il passaggio della particella e fa partire un timer



Gli elettroni (-) derivano verso l'anodo sotto l'influenza del campo elettrico applicato, dove registrano un segnale che ferma il timer



Conoscendo la velocità di deriva  $(v_d)$ , dal tempo trascorso si ricava la distanza della traccia dal filo (con un'ambiguità destra-sinistra)



Analisi delle linee di deriva in una cella della camera KLOE

### Rilascio di energia da fotoni e elettroni



# Il calorimetro KLOE





Composizione del modulo: fibre:Pb:colla = 48:42:10%

Densità: 5 g/cm<sup>3</sup>

15% ca. dell'energia della particella incidente viene convertita in luce/segnale



Distribuzione di un valore vero fissato



Distribuzione dei valori misurati



# Cenni di statistica

Ad ogni misura è associata un'incertezza (errore)

Gli errori sono di due tipi:

Sistematici

andamenti dovuti a limitazioni dell'apparato sperimentale o a influenze esterne, cambiano il valore misurato

#### <u>Statistici</u>

fluttuazioni dovute a effetti stocastici (casuali), diminuiscono la precisione della misura

Spesso si assume che le fluttuazioni **statistiche** siano descritte dalla distribuzione di Gauss

$$g(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left[-\frac{(x-X)^2}{2\sigma^2}\right]$$

Cenni di statistica



Se abbiamo *N* misure con fluttazioni gaussiane, possiamo stimare:

$$X = \frac{1}{N} \sum_{i=1}^{N} x_i \quad la \ media$$

$$\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} (X - x_i)^2} \quad \begin{array}{label{eq:standard}label{eq:standard}label{eq:standard}label{eq:standard} label{eq:standard} \\ \end{array}$$



L'incertezza sulla media e' determinata sia dalla larghezza della distribuzione che dal numero di misure abbiamo fatto:

 $\delta X = \sigma / \sqrt{N}$  l'errore sulla media

# Probabilità

Se i valori misurati si distribuiscono secondo la gaussiana,  $P = g(x|X,\sigma) dx$ 

è la probabilità di ottenere un valore tra x e x + dx da una singola misura.

Supponiamo di avere N misure di y e di conoscere la dipendenza di y rispetto a x



f(x)

dx

Il valore aspettato di y per ogni x è dato da f(x)

I valori di *y* misurati sono distribuiti intorno al valore aspettato secondo la gaussiana; per ogni misura *i*:

 $P_i = g(y_i | f(x), \sigma_i)$ 

## Probabilità congiunta e $\chi^2$

La probabilità di ottenere tutti gli N valori di y misurati è

$$P_{\text{tot}} = \prod_{i=1}^{N} P_i$$
  
=  $\prod_{i=1}^{N} \frac{1}{\sqrt{2\pi\sigma_i^2}} \exp\left(-\frac{[y_i - f(x)]^2}{2\sigma_i^2}\right)$   
$$\ln P_{\text{tot}} = \sum_{i=1}^{N} -\frac{1}{2} \left(\frac{[y_i - f(x)]^2}{\sigma_i^2}\right) - \frac{1}{2} \sum_{i=1}^{N} \ln 2\pi\sigma_i^2$$

La somma dei termini (ln  $2\pi\sigma^2$ ) è una costante che non dipende né dai valori misurati, né dalla previsione f(x) e può essere trascurata.

Definiamo:

$$\chi^{2} \equiv -2 \ln P_{\text{tot}} = \sum_{i=1}^{N} \frac{[y_{i} - f(x)]^{2}}{\sigma_{i}^{2}}$$

# L'uso del $\chi^2$ per fare un fit



$$\chi^2 \equiv -2 \ln P_{\text{tot}} = \sum_{i=1}^{N} \frac{[y_i - f(x)]^2}{\sigma_i^2}$$

Se le nostre assunzioni sono valide, in media ogni termine (che corrisponde a un punto misurato) contribuisce circa 1 alla somma  $\chi^2$ Si può stimare che  $\chi^2/N \approx 1$ 

Supponiamo che *f* dipenda dai parametri  $a_1, a_2, ..., a_M$ . Conosciamo la dipendenza di *f* dalle  $a_k$ , ma non sappiamo i valori esatti delle  $a_k$  stesse. Possiamo massimizzare  $P_{tot}$  in funzione delle  $a_k$ , ovvero minimizzare  $\chi^2$ : Imponiamo:

 $\frac{d\chi^2}{da_k} = 0 \qquad \begin{cases} M \text{ equazioni} \\ \text{per } M \text{ valori } a_k \end{cases}$ 

La minimizzazione può risultare difficile. Di solito si ricorre a tecniche numeriche.

Se il  $\chi^2$  viene calcolato con i migliori valori delle  $a_k$ :  $\chi^2/(N-M) \approx 1$ 

# Esempio: fit a una distribuzione gaussiana



Abbiamo un istogramma di N bin, ciascuno con  $n_i$  eventi

Supponiamo che l'istogramma sia descritto da una gaussiana con media X e larghezza  $\sigma$ 

Spesso si assume che i valori di  $n_i$  siano a loro volta distribuiti intorno ai valori veri secondo delle gaussiane con larghezza  $\sqrt{n_i}$ 

E' importante non fare confusione tra la "gaussianità" delle fluttazioni e dell'istogramma

Minimizzando numericamente:

$$\chi^2 = \sum_{i=1}^N \frac{\left[n_i - g(x \mid X, \sigma)\right]^2}{n_i}$$

si risale a *X* e  $\sigma$ , e ci si aspetta  $\chi^2 = N-2$