QCD at finite isospin density

Philippe de Forcrand ETH Zürich and CERN

with

Misha Stephanov (U. Illinois) and Urs Wenger (ETH)

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

QCD at finite isospin density

• Special case of the physically relevant situation $\mu_u \neq \mu_d \neq \mu_s$,

 Platform to assess limitations of various numerical approaches to finite baryon density,

- Provides a rich range of physical phenomena:
 - (almost free) pion gas at low temperature and density,
 - (almost free) quark gas at high temperature,
 - Bose condensation of charged pions at large density.

QCD at finite isospin density

• Isospin chemical potential: $\mu_d = -\mu_u = \mu_l/2$

$$m_u = m_d \Rightarrow \det(m_u, -\mu_l/2) = \det(m_d, +\mu_l/2)^*$$

 $\det_u \times \det_d = |\det|^2$

- No sign problem (phase quenched)
- System does not carry net baryon number: $Q_u = -Q_d$
- Chemical potential favors creation of $\bar{u}d$ mesons, especially the lightest one, $\pi^- \sim \bar{u}\gamma_5 d \Rightarrow$ Bose condensation
- QCD inequalities (Son & Stephanov) \rightarrow symmetry breaking driven by $\langle \bar{\psi} i \gamma_5 \tau_{1,2} \psi \rangle$

• At small isospin densities one can use chiral perturbation theory

$$\mathcal{L}=rac{1}{4}f_{\pi}^{2}\mathrm{Tr}[D_{\mu}\Sigma D_{\mu}\Sigma^{\dagger}-2m_{\pi}^{2}\mathrm{Re}\Sigma]$$

where $\Sigma \in SU(2)$ is the matrix pion field:

- μ_l breaks SU(2)_{L+R} \rightarrow U(1)_{L+R},
- no additional low energy constant needed (to leading order),
- valid for $\mu_l \lesssim m_{\rho}$.
- Effective potential can be minimized as a function of μ_l using

$$\overline{\Sigma} = \cos lpha + i(au_1 \cos \phi + au_2 \sin \phi) \sin lpha,$$

• flavour rotation angle ϕ irrelevant.

- Two distinct regimes can be identified:
- $|\mu_l| < m_{\pi}$:
 - no pion can be excited,
 - $\overline{\Sigma}=$ 1, i.e. $\langle \bar{u}u+\bar{d}d\rangle=2\langle\bar{\psi}\psi\rangle_{0}$
 - normal QCD vacuum.
- $|\mu_l| \geq m_{\pi}$:
 - π^- particles can be excited,
 - a Bose condensate of π^- may form where $\langle \bar{u}\gamma_5 d \rangle \neq 0$,
 - chiral condensate rotates into pion condensate as a function of μ_l
 - $U(1)_{L+R}$ spontaneously broken $\rightarrow 3d$ XY universality class,
 - π^- becomes massless, π^+, π^0 remain massive.
- When $|\mu_l| \gtrsim m_{
 m p}$ chiral perturbation theory breaks down.

Free energy at low temperature

• Energies *m* to excite a pion from the vacuum at low temperature:

 \Rightarrow at $\mu_l = m_{\pi}$ the π^- Bose condense.

• 'Equation of state' (EoS) : density as a function of isospin chemical potential:

$$\rho_I = \frac{\mathsf{Q}}{\mathsf{V}} = \rho_I(\hat{\mu}_I)$$

where $\hat{\mu}_l = \mu_l / T$.

• Canonical simulations give the free energy $F(Q) = -\ln Z_C(Q)$ and its derivative

$$F(Q) - F(Q-1) \stackrel{V \to \infty}{\Longrightarrow} \frac{dF}{d\rho_l} = \mu_l.$$

EoS at low temperature

 EoS for free bosons, i.e. non-interacting pions at low density (am_π ≈ 0.89 ∀β):

Ph. de Forcrand

QCD at finite isospin density

EoS at low temperature

• Weak pion repulsion ($\sim rac{1}{f_{\pi}^2}$) at T=0
ightarrow Bose condensation:

QCD at finite isospin density

EoS at low temperature

• Weak pion repulsion ($\sim \frac{1}{f_{\pi}^2}$) at low *T*: $T_c(\mu = 0)$ increases $\mu_{crit} > m_{\pi}$, but interaction pushes critical density down

EoS at high temperature

• EoS for a massless, free Fermi gas via the pressure:

$$\frac{P(\mu_l) - P(\mu_l = 0)}{T^4} = \frac{1}{2} \left(\frac{\mu_l}{T}\right)^2 + \frac{1}{4\pi^2} \left(\frac{\mu_l}{T}\right)^4$$

Lattice simulation details

- $N_f = 4 + 4$, i.e. 2 staggered fermions on $8^3 \times 4$ at am = 0.14: \Rightarrow deconfinement transition at $\mu = 0$ is 1^{st} order
- Temperature range $\frac{T}{T_c} \sim [\frac{1}{2}, 1]$
- Pion mass am_{π} changes only by few percent: $\Rightarrow m_{\pi}/T \sim \text{constant}$
- Combine 69 ensembles at 6 values of μ up to $\mu/T = 4$ with Ferrenberg-Swendsen reweighting.
- No *U*(1) breaking term (à la Kogut-Sinclair):
 - maintain importance sampling
 - order parameter $rac{1}{V}\chi_{\pi^-}$, $\chi_{\pi^-}\equiv \langle \sum_x \pi^-(0)\pi^-(x)
 angle$

• Transition BEC \leftrightarrow Fermi gas:

 \Rightarrow measure order parameter: pion susceptibility χ_{π^-}

Bose condensation

• Rescale to recover universal behaviour:

 \Rightarrow good agreement

Bose condensation

• Universality class of the 3d xy-model:

• Reweighting from $\mu = 0$ ensembles alone gives unreliable results

Lessons for finite baryon density

Average sign of the determinant smaller than commonly believed

Reweighting from isospin to baryonic μ over very limited range (Onset of BEC phase at $(Q,\beta) \sim (120,4.52)$) To be expected: $Z_{\text{baryon}}(\beta,\frac{1}{3}\mu_B) \ll Z_{\text{isospin}}(\beta,\frac{1}{2}\mu_I)$ at low T

Summary

• We determined the EoS and the phase diagram of $N_f = 4 + 4$ QCD at finite isospin density and finite temperature.

- We exposed the two mechanisms at work:
 - Bose condensation at high density,
 - deconfinement at high temperature (first-order \rightarrow crossover).

• Implications for the baryonic density case.