Dynamics of heavy quarks in charged $\mathcal{N}=4$ SYM plasma

Aleksi Vuorinen

University of Washington, Seattle & Technical University of Vienna

C. Herzog and AV, arXiv:0708:0609 [hep-th]

Aleksi Vuorinen, UW & TU Vienna Dynamics of heavy quarks in charged $\mathcal{N}=4$ SYM plasma

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Outline

$\mathcal{N}=4$ SYM and Finite temperatures

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Example: Heavy quark energy loss

Setup Gravity calculation Puzzle with R charges

Spinning dragging strings

The metric Single charge solutions Results

Conclusions

▲□ → ▲ □ → ▲ □ →

э

Motivation AdS/CFT preliminaries $\mathcal{N}=4$ SYM and QCD

Outline

$\mathcal{N}=4$ SYM and Finite temperatures

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Example: Heavy quark energy loss

Setup Gravity calculation Puzzle with R charges

Spinning dragging strings

The metric Single charge solutions Results

Conclusions

・ロ・ ・ 四・ ・ ヨ・ ・ 日・ ・

 $\begin{array}{l} \mbox{Motivation} \\ \mbox{AdS/CFT preliminaries} \\ \mathcal{N} = 4 \mbox{ SYM and QCD} \end{array}$

Why bother?

- ► Heavy ion experiments ⇒ Need quantitative understanding of non-Abelian plasmas at
 - High T and small/moderate μ
 - Strong coupling
 - In and (especially) out-of equilibrium
- Combination notoriously problematic
 - Perturbative methods of limited use
 - Dynamical quantities hard for lattice QCD
- Any new insights into dynamics of strongly coupled non-Abelian plasmas welcome!

・ロ・ ・ 四・ ・ 回・ ・ 回・

 $\label{eq:motivation} \begin{array}{l} \mbox{AdS/CFT preliminaries} \\ \mathcal{N} = 4 \mbox{ SYM and QCD} \end{array}$

$\mathcal{N}=4$ SYM and gauge/gravity duality

- Unique feature of $\mathcal{N} = 4$ SYM: It has known string dual
 - $\mathcal{N} = 4$ SYM \Leftrightarrow IIB string theory on $AdS_5 \times S_5$

$$ds^{2} = R^{2} \left\{ \frac{dr^{2}}{r^{2}} + r^{2} \left(-dt^{2} + d\mathbf{x}^{2} \right) + d\Omega_{5}^{2} \right\}$$

- R = (curvature) radius of S_5 and AdS_5
- Parameters string coupling g_s and length scale $\ell_s = \sqrt{\alpha'}$
- AdS/CFT dictionary:
 - Radial coordinate in AdS ~ energy scale in CFT

•
$$(R/\ell_s)^4 = \lambda, g_s = \lambda/(4\pi N_c)$$

- Beautiful aspect:
 - Classical sugra limit: string coupling $g_s \ll 1$ and $R/\ell_s \gg 1$
 - Gauge theory at $\lambda \gg 1$, $N_c \gg 1 \Leftrightarrow$ Classical GR!

< 日 > < 回 > < 回 > < 回 > < 回 > <

 $\label{eq:motivation} \begin{array}{l} \mbox{AdS/CFT preliminaries} \\ \mathcal{N} = 4 \mbox{ SYM and QCD} \end{array}$

$\mathcal{N}=4$ SYM and gauge/gravity duality

- Unique feature of $\mathcal{N} = 4$ SYM: It has known string dual
 - $\mathcal{N} = 4$ SYM \Leftrightarrow IIB string theory on $AdS_5 \times S_5$

$$ds^2 = R^2 \left\{ \frac{dr^2}{r^2} + r^2 \left(-dt^2 + d\mathbf{x}^2 \right) + d\Omega_5^2 \right\}$$

- R = (curvature) radius of S_5 and AdS_5
- Parameters string coupling g_s and length scale $\ell_s = \sqrt{\alpha'}$
- AdS/CFT dictionary:
 - $\blacktriangleright\,$ Radial coordinate in AdS $\sim\,$ energy scale in CFT

•
$$(R/\ell_s)^4 = \lambda, g_s = \lambda/(4\pi N_c)$$

- Beautiful aspect:
 - Classical sugra limit: string coupling $g_s \ll 1$ and $R/\ell_s \gg 1$
 - Gauge theory at $\lambda \gg 1$, $N_c \gg 1 \Leftrightarrow$ Classical GR!

・ロト ・四ト ・ヨト ・ヨト

 $\label{eq:motivation} \begin{array}{l} \mbox{AdS/CFT preliminaries} \\ \mathcal{N} = 4 \mbox{ SYM and QCD} \end{array}$

$\mathcal{N}=4$ SYM and gauge/gravity duality

- Unique feature of $\mathcal{N} = 4$ SYM: It has known string dual
 - $\mathcal{N} = 4$ SYM \Leftrightarrow IIB string theory on $AdS_5 \times S_5$

$$ds^2 = R^2 \left\{ \frac{dr^2}{r^2} + r^2 \left(-dt^2 + d\mathbf{x}^2 \right) + d\Omega_5^2 \right\}$$

- R = (curvature) radius of S_5 and AdS_5
- Parameters string coupling g_s and length scale $\ell_s = \sqrt{\alpha'}$
- AdS/CFT dictionary:
 - $\blacktriangleright\,$ Radial coordinate in AdS $\sim\,$ energy scale in CFT
 - $(R/\ell_s)^4 = \lambda, g_s = \lambda/(4\pi N_c)$
- Beautiful aspect:
 - Classical sugra limit: string coupling $g_s \ll 1$ and $R/\ell_s \gg 1$
 - Gauge theory at $\lambda \gg 1$, $N_c \gg 1 \Leftrightarrow$ Classical GR!

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 $\label{eq:motivation} \begin{array}{l} \mbox{AdS/CFT preliminaries} \\ \mathcal{N} = 4 \mbox{ SYM and QCD} \end{array}$

AdS/CFT dictionary at finite temperature

- ► Turning on finite temperature on gauge theory side \Leftrightarrow Adding a black hole in AdS_5 , with horizon at radial coordinate value $r_h = \pi T$
- Chemical potentials for SO(6) R-symmetry ⇒ Black hole spinning in S₅ directions

 $\label{eq:motivation} \begin{array}{l} \mbox{AdS/CFT preliminaries} \\ \mathcal{N} = 4 \mbox{ SYM and QCD} \end{array}$

AdS/CFT dictionary at finite temperature

- ► Turning on finite temperature on gauge theory side \Leftrightarrow Adding a black hole in AdS_5 , with horizon at radial coordinate value $r_h = \pi T$
- ► Chemical potentials for SO(6) R-symmetry ⇔ Black hole spinning in S₅ directions
- ► Adding massive N = 2 hypermultiplet ⇔ Adding a D7-brane wrapping AdS₅ down to some r₀
- ► Quarks and mesons ⇔ Classical strings hanging from D7 brane

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

What is $\mathcal{N} = 4$ SYM?

- Maximally supersymmetric Yang-Mills theory with 4 SUSY generators
 - Field content: 1 gauge field, 3 complex scalars, 4 Majorana fermions — all massless, as theory conformal
 - Relevant symmetries: local SU(N_c) gauge symmetry (all fields in adj. repr.) and global SO(6) R symmetry

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

What is $\mathcal{N} = 4$ SYM?

- Maximally supersymmetric Yang-Mills theory with 4 SUSY generators
 - Field content: 1 gauge field, 3 complex scalars, 4 Majorana fermions — all massless, as theory conformal
 - Relevant symmetries: local SU(N_c) gauge symmetry (all fields in adj. repr.) and global SO(6) R symmetry

$\mathcal{N}=4$ SYM vs. QCD: $\mathcal{T}=0$

- Conformally invariant: No Λ_{QCD}, fixed coupling
- No S-matrix, no particles
- Conclusion: No real similarity

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

What is $\mathcal{N} = 4$ SYM?

- Maximally supersymmetric Yang-Mills theory with 4 SUSY generators
 - Field content: 1 gauge field, 3 complex scalars, 4 Majorana fermions — all massless, as theory conformal
 - Relevant symmetries: local SU(N_c) gauge symmetry (all fields in adj. repr.) and global SO(6) R symmetry

$\mathcal{N}=4$ SYM vs. QCD: $\mathcal{T}\neq 0$

- Deconfined non-Abelian plasma
- Similar IR physics: Debye screening, finite magnetic mass
- Similar hydro properties
- Conclusion: Near perfect qualitative match!

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Plan of attack

- Challenge 1: Obtain as much insight into strongly coupled N = 4 SYM as possible
 - Especially dynamical quantities inaccessible in strongly coupled QCD interesting
 - An enormous activity during past few years
- Challenge 2: Interpolate to moderate couplings
 - Compute NLO 1/\u03c6 corrections at strong coupling
 - Investigate weak coupling limit of $\mathcal{N} = 4$ SYM
- Challenge 3: Attempt to infer information on QCD
 - Couplings relevant for heavy ion physics in 'no man's land'
 - No clear prescription, but a lot of room to play around...
- Holy Grail: Find string/gravity dual of QCD

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Plan of attack

- Challenge 1: Obtain as much insight into strongly coupled N = 4 SYM as possible
 - Especially dynamical quantities inaccessible in strongly coupled QCD interesting
 - An enormous activity during past few years
- Challenge 2: Interpolate to moderate couplings
 - Compute NLO 1/ λ corrections at strong coupling
 - Investigate weak coupling limit of $\mathcal{N} = 4$ SYM
- Challenge 3: Attempt to infer information on QCD
 - Couplings relevant for heavy ion physics in 'no man's land'
 - No clear prescription, but a lot of room to play around...
- Holy Grail: Find string/gravity dual of QCD

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Plan of attack

- Challenge 1: Obtain as much insight into strongly coupled N = 4 SYM as possible
 - Especially dynamical quantities inaccessible in strongly coupled QCD interesting
 - An enormous activity during past few years
- Challenge 2: Interpolate to moderate couplings
 - Compute NLO $1/\lambda$ corrections at strong coupling
 - Investigate weak coupling limit of $\mathcal{N} = 4$ SYM
- Challenge 3: Attempt to infer information on QCD
 - Couplings relevant for heavy ion physics in 'no man's land'
 - No clear prescription, but a lot of room to play around...

Holy Grail: Find string/gravity dual of QCD

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Plan of attack

- Challenge 1: Obtain as much insight into strongly coupled *N* = 4 SYM as possible
 - Especially dynamical quantities inaccessible in strongly coupled QCD interesting
 - An enormous activity during past few years
- Challenge 2: Interpolate to moderate couplings
 - Compute NLO $1/\lambda$ corrections at strong coupling
 - Investigate weak coupling limit of $\mathcal{N} = 4$ SYM
- Challenge 3: Attempt to infer information on QCD
 - Couplings relevant for heavy ion physics in 'no man's land'
 - No clear prescription, but a lot of room to play around...
- Holy Grail: Find string/gravity dual of QCD

・ロ・ ・ 四・ ・ 回・ ・ 回・

$$\label{eq:main_state} \begin{split} \mathcal{N} &= 4 \; \text{SYM} \; \text{and Finite temperatures} \\ \textbf{Example: Heavy quark energy loss} \\ \text{Spinning dragging strings} \\ \text{Conclusions} \end{split}$$

Setup Gravity calculation Puzzle with R charges

Outline

${\cal N}=4$ SYM and Finite temperatures

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Example: Heavy quark energy loss

Setup Gravity calculation Puzzle with R charges

Spinning dragging strings

The metric Single charge solutions Results

Conclusions

< 日 > < 回 > < 回 > < 回 > < 回 > <

Setup Gravity calculation Puzzle with R charges

Heavy quarks in strongly coupled $\mathcal{N} = 4$ SYM

Herzog et al, hep-th/0605158;...

- Consider dragging a heavy quark of a fundamental N = 2 hypermultiplet through strongly interacting N = 4 SYM plasma
- Want to compute friction coefficient μ in eom

$$\frac{dp}{dt} = -\mu p + f$$

- ► Dragging the quark at constant velocity, f = Mvµ
- ► Letting the quark slow down after initial kick, p(t) = p(0)e^{-µt}

Setup Gravity calculation Puzzle with R charges

Heavy quarks in strongly coupled $\mathcal{N} = 4$ SYM

Herzog et al, hep-th/0605158;...

- Consider dragging a heavy quark of a fundamental N = 2 hypermultiplet through strongly interacting N = 4 SYM plasma
- Want to compute friction coefficient μ in eom

$$\frac{dp}{dt} = -\mu p + f$$

- ► Dragging the quark at constant velocity, f = Mvµ
- ► Letting the quark slow down after initial kick, p(t) = p(0)e^{-µt}

Setup Gravity calculation Puzzle with R charges

Gravity computation a'la Herzog et al.

Start from classical Nambu-Goto action

$$S = -\frac{1}{2\pi lpha'} \int d\sigma \, d\tau \, \sqrt{-\det G}$$

And solve for classical string profile with correct bc's

$$x(r,t) = x_0 + vt + \frac{v}{2r_h} \left\{ \frac{\pi}{2} - \arctan \frac{r}{r_h} - \operatorname{arccoth} \frac{r}{r_h} \right\}$$

・ロ・ ・ 四・ ・ 回・ ・ 回・

Setup Gravity calculation Puzzle with R charges

Gravity computation a'la Herzog et al.

Start from classical Nambu-Goto action

$$S = -\frac{1}{2\pi lpha'} \int d\sigma \, d\tau \, \sqrt{-\det G}$$

with *G* induced world-sheet ($\tau = t$, $\sigma = r$) metric obtained from black hole line element

$$ds^{2} = L^{2}\left\{\frac{dr^{2}}{h} - h dt^{2} + r^{2} d\mathbf{x}^{2}\right\}, \quad h = r^{2}\left(1 - (r_{h}/r)^{4}\right)$$

And solve for classical string profile with correct bc's

$$x(r,t) = x_0 + vt + \frac{v}{2r_h} \left\{ \frac{\pi}{2} - \arctan \frac{r}{r_h} - \operatorname{arccoth} \frac{r}{r_h} \right\}$$

< 日 > < 回 > < 回 > < 回 > < 回 > <

Setup Gravity calculation Puzzle with R charges

Gravity computation a'la Herzog et al.

Start from classical Nambu-Goto action

$$S = -\frac{1}{2\pi lpha'} \int d\sigma \, d\tau \, \sqrt{-\det G}$$

with *G* induced world-sheet ($\tau = t$, $\sigma = r$) metric obtained from black hole line element

$$ds^{2} = L^{2}\left\{\frac{dr^{2}}{h} - h dt^{2} + r^{2} d\mathbf{x}^{2}\right\}, \quad h = r^{2}\left(1 - (r_{h}/r)^{4}\right)$$

And solve for classical string profile with correct bc's

$$x(r,t) = x_0 + vt + rac{v}{2r_h} \left\{ rac{\pi}{2} - \arctan rac{r}{r_h} - \operatorname{arccoth} rac{r}{r_h}
ight\}$$

・ロト ・四ト ・ヨト ・ヨト

-

Setup Gravity calculation Puzzle with R charges

Result for friction and diffusion coefficients

$$\begin{array}{rcl} \displaystyle \frac{dp}{dt} & = & \displaystyle -\frac{\pi}{2} \, \sqrt{\lambda} T^2 \frac{v}{\sqrt{1-v^2}} \, , \\ \\ \displaystyle \mu & = & \displaystyle \frac{\pi}{2} \, \frac{\sqrt{\lambda} T^2}{M_{kin}} \, , \\ \\ \displaystyle D & = & \displaystyle \frac{T}{\mu M_{kin}} \, \frac{2}{\pi \sqrt{\lambda} T} \end{array}$$

This may be compared to weak coupling expansion

$$D = \frac{12\pi}{d_A g^4 T} \left\{ \ln \frac{2T}{m_D} + \frac{13}{12} - \gamma_E + \frac{1}{3} \ln 2 + \frac{\zeta'(2)}{\zeta(2)} \right\}$$

P. Chesler and AV, hep-ph/0607148

イロト イヨト イヨト イヨト

크

Setup Gravity calculation Puzzle with R charges

Result for friction and diffusion coefficients

$$\begin{aligned} \frac{dp}{dt} &= -\frac{\pi}{2}\sqrt{\lambda}T^2\frac{v}{\sqrt{1-v^2}}, \\ \mu &= \frac{\pi}{2}\frac{\sqrt{\lambda}T^2}{M_{kin}}, \\ D &= \frac{T}{\mu M_{kin}}\frac{2}{\pi\sqrt{\lambda}T} \end{aligned}$$

This may be compared to weak coupling expansion

$$D = \frac{12\pi}{d_A g^4 T} \left\{ \ln \frac{2T}{m_D} + \frac{13}{12} - \gamma_E + \frac{1}{3} \ln 2 + \frac{\zeta'(2)}{\zeta(2)} \right\}$$

P. Chesler and AV, hep-ph/0607148

크

Setup Gravity calculation Puzzle with R charges

æ

Setup Gravity calculation Puzzle with R charges

 Can also compute energy perturbation in the plasma created by the heavy quark; P. Chesler and L. Yaffe, arXiv:0706.0368 [hep-th]

・ロト ・日下・ ・ 日下

Setup Gravity calculation Puzzle with R charges

Puzzle with R charges

- ► To model finite u and d quark chemical potentials in QCD, want to investigate finite R charge µ in N = 4 SYM
- In the literature, there exist two mutually incompatible solutions
 - Herzog's (H; hep-th/0605191) 5d solution with velocity dependent μ
 - Caceres and Guijosa's (CG; hep-th/0605235) simplified 10*d* solution with velocity independent μ
- Obvious questions:
 - Does H uplift to 10d?
 - If yes, what is its relation to CG on the SYM side?

▶ Would be interesting to find all relevant 10*d* solutions...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

$$\label{eq:linear} \begin{split} \mathcal{N} &= 4 \text{ SYM} \text{ and Finite temperatures} \\ \textbf{Example: Heavy quark energy loss} \\ \text{Spinning dragging strings} \\ \text{Conclusions} \end{split}$$

Setup Gravity calculation Puzzle with R charges

Puzzle with R charges

- ► To model finite u and d quark chemical potentials in QCD, want to investigate finite R charge µ in N = 4 SYM
- In the literature, there exist two mutually incompatible solutions
 - Herzog's (H; hep-th/0605191) 5d solution with velocity dependent μ
 - Caceres and Guijosa's (CG; hep-th/0605235) simplified 10*d* solution with velocity independent μ
- Obvious questions:
 - Does H uplift to 10d?
 - If yes, what is its relation to CG on the SYM side?

▶ Would be interesting to find all relevant 10*d* solutions...

Setup Gravity calculation Puzzle with R charges

Puzzle with R charges

- ► To model finite u and d quark chemical potentials in QCD, want to investigate finite R charge µ in N = 4 SYM
- In the literature, there exist two mutually incompatible solutions
 - Herzog's (H; hep-th/0605191) 5d solution with velocity dependent μ
 - Caceres and Guijosa's (CG; hep-th/0605235) simplified 10d solution with velocity independent μ
- Obvious questions:
 - Does H uplift to 10d?
 - If yes, what is its relation to CG on the SYM side?
- ▶ Would be interesting to find all relevant 10*d* solutions...

(日)

The metric Single charge solutions Results

Outline

$\mathcal{N}=4$ SYM and Finite temperatures

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Example: Heavy quark energy loss

Setup Gravity calculation Puzzle with R charges

Spinning dragging strings

The metric Single charge solutions Results

Conclusions

< 日 > < 回 > < 回 > < 回 > < 回 > <

The metric Single charge solutions Results

The spinning black D3-brane background

$$ds_{10}^{2} = \sqrt{\Delta}ds_{5}^{2} + \frac{R^{2}}{\sqrt{\Delta}}\sum_{i=1}^{3}X_{i}^{-1}\left(d\mu_{i}^{2} + \mu_{i}^{2}(d\psi_{i} + A^{i}/R)^{2}\right),$$

$$ds_{5}^{2} = -(H_{1}H_{2}H_{3})^{-2/3}h dt^{2} + (H_{1}H_{2}H_{3})^{1/3}(h^{-1}dr^{2} + \frac{r^{2}}{R^{2}}d\mathbf{x}^{2});$$

$$X_{i} = H_{i}^{-1}(H_{1}H_{2}H_{3})^{1/3}; \quad A^{i} = \frac{(1 - H_{i}^{-1})\sqrt{m}}{\ell_{i}}dt;$$

$$h = -\frac{m}{r^{2}} + \frac{r^{2}}{R^{2}}H_{1}H_{2}H_{3}; \quad \Delta = \sum_{i=1}^{3}X_{i}\mu_{i}^{2}; \quad H_{i} = 1 + \frac{\ell_{i}^{2}}{r^{2}};$$

$$\mu_{1} = \sin\theta_{1}; \quad \mu_{2} = \cos\theta_{1}\sin\theta_{2}; \quad \mu_{3} = \cos\theta_{1}\cos\theta_{2}.$$

The metric Single charge solutions Results

Field theory temperature and chemical potentials:

$$T = \frac{1}{2\pi r_h^2 R^2} \frac{2r_h^6 + (\ell_1^2 + \ell_2^2 + \ell_3^2)r_h^4 - \ell_1^2 \ell_2^2 \ell_3^2}{\prod_{i=1}^3 \sqrt{r_h^2 + \ell_i^2}},$$

$$\Phi_i = \frac{A^i}{R} \Big|_{r \to \infty} - \frac{A^i}{R} \Big|_{r=r_h} = -\frac{\ell_i \prod_{j=1}^3 \sqrt{r_h^2 + \ell_i^2}}{R^2 r_h (r_h^2 + \ell_i^2)},$$

- Challenge again: Solve classical equations of motion for strings stretching from D7 brane to horizon
 - Boundary conditions at D7 brane and dependence on angular coordinates important for field theory interpretation
- From now on, for simplicity consider turning on only one chemical potential

The metric Single charge solutions Results

Field theory temperature and chemical potentials:

$$\begin{split} T &= \frac{1}{2\pi r_h^2 R^2} \frac{2r_h^6 + (\ell_1^2 + \ell_2^2 + \ell_3^2)r_h^4 - \ell_1^2 \ell_2^2 \ell_3^2}{\prod_{i=1}^3 \sqrt{r_h^2 + \ell_i^2}}, \\ \Phi_i &= \frac{A^i}{R} \bigg|_{r \to \infty} - \frac{A^i}{R} \bigg|_{r=r_h} = -\frac{\ell_i \prod_{j=1}^3 \sqrt{r_h^2 + \ell_i^2}}{R^2 r_h (r_h^2 + \ell_i^2)} \end{split}$$

- Challenge again: Solve classical equations of motion for strings stretching from D7 brane to horizon
 - Boundary conditions at D7 brane and dependence on angular coordinates important for field theory interpretation
- From now on, for simplicity consider turning on only one chemical potential

The metric Single charge solutions Results

Single charge solutions

- Introduction of chemical potentials breaks SO(6) R symmetry into SO(4). Turning on µ for
 - ► Two elements of Cartan sub-algebra of SO(6) in unbroken SO(4) ⇒ D7 brane and string neutral
 - One element in broken part \Rightarrow D7 brane and string charged

 First case corresponds to polar, second to equatorial strings

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The metric Single charge solutions Results

Single charge solutions

- Introduction of chemical potentials breaks SO(6) R symmetry into SO(4). Turning on µ for
 - ► Two elements of Cartan sub-algebra of SO(6) in unbroken SO(4) ⇒ D7 brane and string neutral
 - One element in broken part \Rightarrow D7 brane and string charged
- First case corresponds to polar, second to equatorial strings

The metric Single charge solutions Results

- Various possibilities for the D7 brane the string is attached to
 - Non-rotating brane not extending in ψ directions $\Rightarrow \dot{\psi} = \mathbf{0}$
 - Non-rotating brane extending in ψ directions ⇒ No torque condition at brane, Neumann bc's
 - Rotating brane

・ロ・ ・ 四・ ・ 回・ ・ 回・

The metric Single charge solutions Results

- Various possibilities for the D7 brane the string is attached to
 - Non-rotating brane not extending in ψ directions $\Rightarrow \dot{\psi} = \mathbf{0}$
 - ► Non-rotating brane extending in ψ directions ⇒ No torque condition at brane, Neumann bc's
 - Rotating brane
- Simplest case with known stable D7 brane configuration; CG solution
 - On field theory side, seems to correspond to non-zero R charge with zero chiral condensate
 - Possible problem: For charged string, R charge density diverges

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The metric Single charge solutions Results

- Various possibilities for the D7 brane the string is attached to
 - Non-rotating brane not extending in ψ directions $\Rightarrow \dot{\psi} = \mathbf{0}$
 - Non-rotating brane extending in ψ directions ⇒ No torque condition at brane, Neumann bc's
 - Rotating brane
- Intuitive gravitational picture; uplift of H solution
 - On the field theory side, seems to correspond to non-zero chiral condensate
 - Problem: At T = 0, brane configuration unstable
 - Too cool to be physical...

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The metric Single charge solutions Results

크

The metric Single charge solutions Results

- Various possibilities for the D7 brane the string is attached to
 - Non-rotating brane not extending in ψ directions $\Rightarrow \dot{\psi} = \mathbf{0}$
 - Non-rotating brane extending in ψ directions ⇒ No torque condition at brane, Neumann bc's
 - Rotating brane
- No known examples of suitable classical brane solutions
 - Field theory interpretation includes spatial gradient in R charge chemical potential

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

The metric Single charge solutions Results

Results I

- General result for string profile in terms of forces in x and ψ directions, $P \equiv 2\pi \alpha' \pi_x^1$ and $L \equiv 2\pi \alpha' \pi_{\psi}^1$ $(x')^2 = \frac{\beta \epsilon}{\alpha \gamma} \frac{(\pm L v \gamma (\phi + \omega) + P(-\alpha + v^2 \gamma))^2}{\gamma \epsilon (L(\phi + \omega) \pm P v)^2 - L^2 f^2 \alpha \gamma - P^2 \alpha \epsilon - \alpha \gamma \epsilon I_1},$ $(\psi')^2 = \frac{\beta \gamma}{\alpha \epsilon} \frac{(\pm L (\epsilon (\phi + \omega)^2 - f^2 \alpha) + P v \epsilon (\phi + \omega))^2}{\gamma \epsilon (L(\phi + \omega) \pm P v)^2 - L^2 f^2 \alpha \gamma - P^2 \alpha \epsilon - \alpha \gamma \epsilon I_1}$
 - CG solution with $\omega \equiv \dot{\psi} = 0$, H with L = 0
 - α , β , etc. complicated functions of r, r_h , ℓ , R
- ▶ *P* from requiring x', ψ' be well-defined from r_h to r_0
 - ▶ Both numer. and denomin. vanish at some $r = r_1(r_h, \ell, R)$

The metric Single charge solutions Results

Results I

• General result for string profile in terms of forces in *x* and ψ directions, $P \equiv 2\pi \alpha' \pi_x^1$ and $L \equiv 2\pi \alpha' \pi_{\psi}^1$ $(x')^2 = \frac{\beta \epsilon}{\alpha \gamma} \frac{(\pm L v \gamma (\phi + \omega) + P(-\alpha + v^2 \gamma))^2}{\gamma \epsilon (L(\phi + \omega) \pm P v)^2 - L^2 f^2 \alpha \gamma - P^2 \alpha \epsilon - \alpha \gamma \epsilon I_1}$

$$(\psi')^2 = \frac{\beta\gamma}{\alpha\epsilon} \frac{\left(\pm L\left(\epsilon(\phi+\omega)^2 - f^2\alpha\right) + Pv\epsilon(\phi+\omega)\right)^2}{\gamma\epsilon(L(\phi+\omega)\pm Pv)^2 - L^2f^2\alpha\gamma - P^2\alpha\epsilon - \alpha\gamma\epsilon I_1}$$

• CG solution with $\omega \equiv \dot{\psi} = 0$, H with L = 0

- α , β , etc. complicated functions of r, r_h , ℓ , R
- *P* from requiring x', ψ' be well-defined from r_h to r_0
 - ▶ Both numer. and denomin. vanish at some $r = r_1(r_h, \ell, R)$

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

The metric Single charge solutions Results

Results II

- Final result: Drag force $\pi_x^1 = \frac{1}{2\pi\alpha'} g_{xx}(r_1)v$
- All solutions investigated (CG, H) appear stable against small perturbations
 - Full analysis awaits
 - Polar CG solutions leave door open for super-radiant instabilities
- Main lesson: Drag force depends strongly on transverse (S₅) geometry
 - Bad news for hopes to obtain information relevant for QCD
 - Is R charge chemical potential at all analogous to (light) quark μ in QCD?

・ロ・ ・ 四・ ・ 回・ ・ 回・

The metric Single charge solutions Results

Results II

- Final result: Drag force $\pi_x^1 = \frac{1}{2\pi\alpha'} g_{xx}(r_1)v$
- All solutions investigated (CG, H) appear stable against small perturbations
 - Full analysis awaits
 - Polar CG solutions leave door open for super-radiant instabilities
- Main lesson: Drag force depends strongly on transverse (S₅) geometry
 - Bad news for hopes to obtain information relevant for QCD
 - Is R charge chemical potential at all analogous to (light) quark μ in QCD?

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

The metric Single charge solutions Results

Results II

- Final result: Drag force $\pi_x^1 = \frac{1}{2\pi\alpha'} g_{xx}(r_1)v$
- All solutions investigated (CG, H) appear stable against small perturbations
 - Full analysis awaits
 - Polar CG solutions leave door open for super-radiant instabilities
- Main lesson: Drag force depends strongly on transverse (S₅) geometry
 - Bad news for hopes to obtain information relevant for QCD
 - Is R charge chemical potential at all analogous to (light) quark μ in QCD?

<ロ> <四> <四> <四> <三> <三> <三> <三> <三> <三> <三

Outline

$\mathcal{N}=4$ SYM and Finite temperatures

Motivation AdS/CFT preliminaries $\mathcal{N} = 4$ SYM and QCD

Example: Heavy quark energy loss

Setup Gravity calculation Puzzle with R charges

Spinning dragging strings

The metric Single charge solutions Results

Conclusions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Summary and conclusions

- AdS/CFT duality unique and powerful tool for studying strongly coupled non-Abelian plasmas
 - ► Dynamical properties of *N* = 4 SYM theory available at large *N_c*, *λ* limit
 - Recently much progress in gravity duals of other related theories
- Hope to eventually learn lessons about QGP physics
 - ▶ At finite *T*, SYM and QCD plasmas qualitatively similar
 - Quantitative predictions presently questionable; weak coupling calculations important step in this direction
- Discrepancy in drag force of heavy quarks in charged
 N = 4 plasma solved
 - CG solution seems stable and physically simplest
 - Strong dependence of results on transverse geometry

• □ ▶ • □ ▶ • □ ▶ • □ ▶ •