Random matrices and the QCD sign problem

M. Stephanov
U. of Illinois at Chicago
with J. Han

QCD Phase Diagram

QCD Phase Diagram

Locating the QCD critical point

Locating the QCD critical point

Locating the QCD critical point

Experiments can scan the phase diagram by changing \sqrt{s} : RHIC, SPS, FAIR.
Signatures: event-by-event fluctuations.
Susceptibilities diverge \Rightarrow fluctuations grow towards the critical point.

Locating the QCD critical point

Sign problem. Lattice:

- Reweighting \Leftarrow
- Taylor expansion
- Imaginary μ
- Canonical

The phase of the Dirac determinant

Let $\operatorname{det} \mathbb{M}=|\operatorname{det} \mathbb{M}| e^{i \theta}$. The average phase factor:

$$
\left\langle e^{i 2 \theta}\right\rangle_{1+1^{*}}=\frac{\left.\left.\left\langle e^{i 2 \theta}\right| \operatorname{det} \mathbb{M}\right|^{2}\right\rangle_{0}}{\left.\left.\langle | \operatorname{det} \mathbb{M}\right|^{2}\right\rangle_{0}}=\frac{Z_{1+1}}{Z_{1+1^{*}}} \equiv R
$$

- R measures the severity of the sign problem.

In QCD:

$$
R(T, \mu)=\frac{Z_{1+1}}{Z_{1+1^{*}}}=\frac{e^{V P_{1+1} / T}}{e^{V P_{1+1^{*} / T}}}
$$

For example, when $T \ll m_{\pi}$,

$$
P_{1+1^{*}} \sim \mu^{2} e^{-m_{\pi} / T}
$$

while

$$
P_{1+1} \sim \mu^{2} e^{-m_{N} / T} \ll P_{1+1^{*}}
$$

$$
\text { (} \Rightarrow \text { Cohen: } m_{N} \geq 3 / 2 m_{\pi} \text {) }
$$

Thus

$$
\begin{equation*}
R \sim \exp \left(-V \mu^{2} e^{-m_{\pi} / T}\right) \rightarrow 0 \quad \text { as } \quad V \rightarrow \infty \tag{Splittorff}
\end{equation*}
$$

R and the severity of the sign problem

- In a finite volume V (as in lattice simulations) R is also finite.
- In a MC calculation, when R becomes small, noise may cause spurious zeros in $Z_{1+1} \sim R$, which might be misidentified as Lee-Yang zeros.
(Ejiri)
- These fluctuations are large when $1+1^{*}$ approaches phase transition to pion condensation.
(Splittorff)

- This happens because μ enters the domain of eigenvalues of Dirac operator in μ-plane (right):

$$
\operatorname{det} \mathbb{M}=\prod_{i}\left(\mu-\mu_{i}\right)=0
$$

Small fluctuation in the position of an eigenvalue μ_{i} translates into a large
 change in phase of $\operatorname{det} \mathbb{M}$.

R and pion condensation boundary in RMM

To guard against possible misidentification of the critical point it is important to know where the boundary of pion condensation occurs at $T \neq 0$.

An approach: use RMM to study the behavior of $R(T, \mu)$.

$$
Z_{1+1}=\left\langle\operatorname{det}^{2} \mathbb{M}\right\rangle_{0}=\int \mathcal{D} X e^{-N \operatorname{Tr} X X^{\dagger}} \operatorname{det}^{2} \mathbb{M}
$$

where \mathbb{M} is the $2 N \times 2 N$ matrix approximating the Dirac operator:

$$
\mathbb{M}=\left(\begin{array}{cc}
0 & i X+C \\
i X^{\dagger}+C & 0
\end{array}\right)+m+\mu \gamma_{0} ; \quad C=\underbrace{i T\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}_{\text {"Matsubara" }},
$$

X is $N \times N$ complex random matrix. $N \rightarrow \infty$ corresponds to thermodynamic limit.

$$
Z_{1+1^{*}}=\left\langle\operatorname{det} \mathbb{M} \operatorname{det} \mathbb{M}^{*}\right\rangle_{0}
$$

Properties of the Random Matrix Model

- For $\mu \neq 0 \quad \operatorname{det} \mathbb{M}$ is complex \Rightarrow sign problem.
- Solvable analytically.

Examples:

- Phase diagram (1+1):

- Complex μ singularities
(Taylor exp. convergence radius)

Analytical solution of RMM

- After Hubbard-Stratonovich:

$$
Z_{1+1}=\int \mathcal{D} A e^{-N \operatorname{tr} A A^{\dagger}} \operatorname{det}^{\frac{N}{2}}\left(\begin{array}{cc}
A+m & \mu+i \pi T \\
\mu+i \pi T & A^{\dagger}+m
\end{array}\right) \times(\text { same with } T \rightarrow-T)
$$

where A is complex 2×2 (i.e., $N_{\mathrm{f}} \times N_{\mathrm{f}}$) matrix.

$$
Z_{1+1^{*}}=\left.Z_{1+1}\right|_{\mu \rightarrow \mu \tau_{3}} ; \quad\left(\mathbb{M}^{*}=\left.\mathbb{M}\right|_{\mu \rightarrow-\mu}\right)
$$

- Define $\Omega(A): Z=\int \mathcal{D} A e^{-N \Omega(A)}, N \rightarrow \infty$ dominated by saddle point of $\Omega(A)$:

$$
A-\frac{(A+m)\left[(A+m)^{2}-\mu^{2}+T^{2}\right]}{\left[(A+m)^{2}-\mu^{2}+T^{2}\right]^{2}+4 \mu^{2} T^{2}}=0
$$

- This saddle point is the same for $1+1$ and $1+1^{*}$ RMM (outside the pion condensation domain) and also $\min \Omega_{1+1}=\min \Omega_{1+1^{*}}$. I.e.

$$
R \sim \frac{e^{-N \Omega_{1+1}}}{e^{-N \Omega_{1+1^{*}}}} \rightarrow e^{0 \cdot N} \sim 1 \quad \text { as } N \rightarrow \infty, \text { not } 0
$$

Analytical solution of RMM (contd.)

Need second derivative matrix $\frac{\partial^{2} \Omega}{\partial A_{. .} \partial A_{. .}} \equiv \Omega_{. . . .}^{\prime \prime}$:

$$
R=\frac{Z_{1+1}}{Z_{1+1^{*}}}=\left(\frac{\operatorname{det} \Omega_{1+1}^{\prime \prime}}{\operatorname{det} \Omega_{1+1^{*}}^{\prime \prime}}\right)^{-1 / 2}=\left|\frac{b_{3}^{2}-b_{4}^{2}}{b_{1}^{2}-b_{2}^{2}}\right|
$$

where

$$
\begin{aligned}
& b_{1}=\frac{(A+m)^{2}}{W}\left(1-\frac{8 T^{2} \mu^{2}}{W}\right) \\
& b_{2}=1-\frac{T^{2}-\mu^{2}}{W}-\frac{8 T^{2} \mu^{2}(A+m)^{2}}{W^{2}} \\
& b_{3}=1-\frac{T^{2}+\mu^{2}}{W} \\
& b_{4}=\frac{(A+m)^{2}}{W} \\
& W=(A+m)^{4}+2(A+m)^{2}\left(T^{2}-\mu^{2}\right)+\left(T^{2}+\mu^{2}\right)^{2}
\end{aligned}
$$

$R(T, \mu)$ contour plot

- Sign problem is less severe at higher temperature :)

$R(T, \mu)$ contour plot

- Sign problem is less severe at higher temperature :)
- First order transition of $1+1$ is inside the $R=0$ boundary :(

Interesting limits

- $\mathrm{T}=0$, small m and $\mu \sim \sqrt{m}$ (Splittorff, Verbaarschot)

$$
R \approx 1-\frac{2 \mu^{2}}{m}=1-\left(\frac{2 \mu}{m_{\pi}}\right)^{2}
$$

- $T<1$, small m and $\mu \sim \sqrt{m}$

$$
R \approx 1-\sqrt{1-T^{2}}\left(\frac{2 \mu}{m_{\pi}}\right)^{2}
$$

sign problem weakens with T.

- Chiral limit ($m=0$), any μ, T

$$
R=\frac{\left[\left(T^{2}+\mu^{2}\right)^{2}-\left(T^{2}+\mu^{2}\right)\right]^{2}}{\left[\left(T^{2}+\mu^{2}\right)^{2}-\left(T^{2}-\mu^{2}\right)\right]^{2}}
$$

$R=0$ in a 90° pie: $T^{2}+\mu^{2}<1$.

$R=0$ boundary near $T=1, \mu=0$

How does the $R=0$ (pion condensation) boundary approach $T=1, \mu \rightarrow 0$ as $m_{\pi} \rightarrow 0$?

- In RMM, expanding the analytic solution (notation: $t \equiv T^{2}-1$)

$$
A^{3}+A\left(t+3 \mu^{2}\right)-m=0
$$

i.e. at $m=0 A \sim\left(-t-3 \mu^{2}\right)^{1 / 2}=\left(t_{c}-t\right)^{1 / 2}$ or $A \sim m^{1 / 3}$ at $t=t_{c}$.

- The $R=0$ curve is

$$
T^{2}=1-\mu^{2}-\frac{m^{2}}{4 \mu^{4}}=1-m^{2 / 3} F\left(\frac{\mu}{m^{1 / 3}}\right)
$$

with $F(x)=x^{2}+1 /\left(4 x^{2}\right)-$ a scaling function.

Pion condensation boundary as $m_{\pi} \rightarrow 0-$ scaling

In RMM: $T_{c}-T_{*} \sim m^{2 / 3}$ and $\mu_{*}=m^{1 / 3}$ (slower than $m_{\pi} \sim m^{1 / 2}$).

In QCD: $T_{c}-T_{*} \sim m^{1 /(\beta \delta)}$ and $\mu_{*}=m^{1 /(2 \beta \delta)}$?

Summary

- Using analytical solution of RMM we found $R=\left\langle e^{2 i \theta}\right\rangle$ at finite T and μ.
- Sign problem is less severe at higher T.
- The $1+1$ phase transition is hidden inside the $R=0$ (pion condensation) domain.
- As $m \rightarrow 0$ the domain $R=0$ approaches $T=T_{c}, \mu=0$ point in a self-similar way, with $\mu_{*} \sim m^{1 / 3}$ (in RMM) - slower than m_{π}.

