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Locating the QCD critical point
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Experiments can scan the phase diagram by changing
√

s: RHIC, SPS, FAIR.

Signatures: event-by-event fluctuations.

Susceptibilities diverge ⇒ fluctuations grow towards the critical point.
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The phase of the Dirac determinant

Let det M = | det M| eiθ. The average phase factor :

〈ei2θ〉1+1∗ =
〈ei2θ| det M|2〉0
〈|det M|2〉0

=
Z1+1

Z1+1∗
≡ R

R measures the severity of the sign problem.

In QCD:

R(T, µ) =
Z1+1

Z1+1∗
=

eV P1+1/T

eV P1+1∗/T

For example, when T ≪ mπ,

P1+1∗ ∼ µ2e−mπ/T

while P1+1 ∼ µ2e−mN /T ≪ P1+1∗ (⇒ Cohen: mN ≥ 3/2 mπ)

Thus

R ∼ exp
“

−V µ2e−mπ/T
”

→ 0 as V → ∞ (Splittorff)
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R and the severity of the sign problem

In a finite volume V (as in lattice simulations) R is also finite.

In a MC calculation, when R be-
comes small, noise may cause spuri-
ous zeros in Z1+1 ∼ R, which might
be misidentified as Lee-Yang zeros.

(Ejiri)
These fluctuations are large when

1+1∗ approaches phase transition to
pion condensation. (Splittorff) 0 0.5 1 1.5 2

2µ/mπ

0.7

0.8

0.9

1

1.1

1.2

1.3

T
/T

0

This happens because µ enters the
domain of eigenvalues of Dirac operator
in µ-plane (right):

det M =
Y

i

(µ − µi) = 0.

Small fluctuation in the position of an
eigenvalue µi translates into a large
change in phase of det M.
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R and pion condensation boundary in RMM

To guard against possible misidentification of the critical point it is important to
know where the boundary of pion condensation occurs at T 6= 0.

An approach: use RMM to study the behavior of R(T, µ).

Z1+1 = 〈det2M〉0 =

Z

DX e−N Tr XX†

det2M

where M is the 2N × 2N matrix approximating the Dirac operator:

M =

 
0 iX + C

iX† + C 0

!

+ m + µγ0; C = iT

 
1 0

0 −1

!

| {z }

“Matsubara”

,

X is N ×N complex random matrix. N → ∞ corresponds to thermodynamic limit.

Z1+1∗ = 〈det M det M
∗〉0
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Properties of the Random Matrix Model

For µ 6= 0 det M is complex ⇒ sign problem.

Solvable analytically .

Examples:

Phase diagram (1+1):
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Analytical solution of RMM

After Hubbard-Stratonovich:

Z1+1 =

Z

DA e−N tr AA†

det
N

2

 
A + m µ + iπT

µ + iπT A† + m

!

× (same with T → −T )

where A is complex 2 × 2 (i.e., Nf × Nf ) matrix.

Z1+1∗ = Z1+1

˛
˛
˛
µ→µτ3

; (M∗ = M

˛
˛
˛
µ→−µ

)

Define Ω(A): Z =
R
DA e−NΩ(A), N → ∞ dominated by saddle point of Ω(A):

A − (A + m)[(A + m)2 − µ2 + T 2]

[(A + m)2 − µ2 + T 2]2 + 4µ2T 2
= 0

This saddle point is the same for 1 + 1 and 1 + 1∗ RMM (outside the pion
condensation domain) and also minΩ1+1 = minΩ1+1∗ . I.e.

R ∼ e−NΩ1+1

e−NΩ1+1∗
→ e0·N ∼ 1 as N → ∞, not 0.
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Analytical solution of RMM (contd.)

Need second derivative matrix
∂2Ω

∂A..∂A..
≡ Ω

′′

.. ..:

R =
Z1+1

Z1+1∗
=

 

detΩ
′′

1+1

detΩ
′′

1+1∗

!−1/2

=

˛
˛
˛
˛

b2
3 − b2

4

b2
1 − b2

2

˛
˛
˛
˛

where

b1 =
(A + m)2

W

„

1 − 8T 2µ2

W

«

b2 = 1 − T 2 − µ2

W
− 8T 2µ2(A + m)2

W 2

b3 = 1 − T 2 + µ2

W

b4 =
(A + m)2

W

W = (A + m)4 + 2(A + m)2(T 2 − µ2) + (T 2 + µ2)2
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R(T, µ) contour plot
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Sign problem is less severe at higher temperature :)
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R(T, µ) contour plot
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Sign problem is less severe at higher temperature :)

First order transition of 1+1 is inside the R = 0 boundary :(
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Interesting limits

T=0, small m and µ ∼ √
m

(Splittorff, Verbaarschot)

R ≈ 1 − 2µ2

m
= 1 −

„
2µ

mπ

«2

.

T < 1, small m and µ ∼ √
m

R ≈ 1 −
p

1 − T 2

„
2µ

mπ

«2

sign problem weakens with T .

Chiral limit (m = 0), any µ, T

R =
[(T 2 + µ2)2 − (T 2 + µ2)]2

[(T 2 + µ2)2 − (T 2 − µ2)]2

R = 0 in a 90◦ pie: T 2 + µ2 < 1.
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R = 0 boundary near T = 1, µ = 0
How does the R = 0 (pion condensation) boundary approach T = 1, µ → 0 as
mπ → 0?

T T

µµ 00

Tc

smaller mlarger m

In RMM, expanding the analytic solution (notation: t ≡ T 2 − 1)

A3 + A(t + 3µ2) − m = 0

i.e. at m = 0 A ∼ (−t − 3µ2)1/2 = (tc − t)1/2 or A ∼ m1/3 at t = tc.

The R = 0 curve is

T 2 = 1 − µ2 − m2

4µ4
= 1 − m2/3F

“ µ

m1/3

”

,

with F (x) = x2 + 1/(4x2) – a scaling function.
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Pion condensation boundary asm
π
→ 0 – scaling

µ = 0

Tc

t/m2/3

µ/m1/3

In RMM: Tc − T∗ ∼ m2/3 and µ∗ = m1/3 (slower than mπ ∼ m1/2).

In QCD: Tc − T∗ ∼ m1/(βδ) and µ∗ = m1/(2βδ) ?
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Summary

Using analytical solution of RMM we found R = 〈e2iθ〉 at finite T and µ.

Sign problem is less severe at higher T .

The 1 + 1 phase transition is hidden inside the R = 0 (pion condensation)
domain.

As m → 0 the domain R = 0 approaches T = Tc, µ = 0 point in a self-similar
way, with µ∗ ∼ m1/3 (in RMM) – slower than mπ.
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