Charmonium in the quark-gluon plasma

Jon-Ivar Skullerud

Trinity College Dublin

Xtreme QCD, Frascati, 6-8 August 2007

Outline

Background Quenched vs dynamical Spectral functions

Results

Reconstructed correlators MEM systematics Temperature dependence

Summary and outlook

Background

- ▶ J/ψ suppression a probe of the quark–gluon plasma?
- Quenched lattice results indicate that S-waves survive well into the plasma phase
- Sequential charmonium suppression + recombination explains experimental results?
- Uncertainty about which potential to use in potential models, how to treat continuum
- How reliable are quenched lattice simulations?

Quenched vs dynamical

Are quenched lattice results reliable?

- ► $T_c^{N_f=0} \approx 1.5 T_c^{N_f=2+1}, T_c^{N_f=2} \approx T_c^{N_f=2+1}$
- No $D \overline{D}$ threshold in quenched QCD
- Light quarks can catalyse QQ dissociation so it occurs at lower temperature
- Lower T_c , lower T_d conspire to give the same T_d/T_c ?
- Potential models indicate little change in T_d/T_c

Quenched vs dynamical

Are quenched lattice results reliable?

- ► $T_c^{N_f=0} \approx 1.5 T_c^{N_f=2+1}, T_c^{N_f=2} \approx T_c^{N_f=2+1}$
- No $D \overline{D}$ threshold in quenched QCD
- Light quarks can catalyse QQ dissociation so it occurs at lower temperature
- Lower T_c , lower T_d conspire to give the same T_d/T_c ?
- Potential models indicate little change in T_d/T_c
- Only dynamical lattice calculations can give the answer

Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow \frac{a_t}{a_t} \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$

Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Independent handle on temperature

Dynamical anisotropic lattices

- A large number of points in time direction required
- For $T = 2T_c$, $\mathcal{O}(10)$ points $\Longrightarrow a_t \sim 0.025$ fm
- Far too expensive with isotropic lattices $a_s = a_t!$
- Independent handle on temperature

- Introduces 2 additional parameters
- Non-trivial tuning problem [PRD 74 014505 (2006)]

Spectral functions

contain information about the fate of hadrons in the medium

- ightarrow stable states $ho(\omega)\sim\delta(\omega-m)$
- ightarrow resonances or thermal width $ho(\omega)\sim$ Lorentzian...
- $\rightarrow~$ continuum above threshold

can be used to extract transport coefficients

Spectral functions

contain information about the fate of hadrons in the medium

- ightarrow stable states $ho(\omega)\sim\delta(\omega-m)$
- ightarrow resonances or thermal width $ho(\omega) \sim$ Lorentzian...
- \rightarrow continuum above threshold
- can be used to extract transport coefficients
- ▶ $\rho_{\Gamma}(\omega, \vec{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \vec{p})$ according to

$${\it G}_{\Gamma}(au,ec{
ho}) = \int
ho_{\Gamma}(\omega,ec{
ho}) rac{\cosh[\omega(au-1/2 au)]}{\sinh(\omega/2 au)} d\omega$$

an ill-posed problem — requires a large number of time slices
 use Maximum Entropy Method to determine most likely ρ(ω)

Simulation parameters

[arXiv:0705.2198]			
Light quarks	$m_\pi/m_ ho$	0.54	
Anisotropy	ξ	6	
Lattice spacing	$a_{ au}$	0.025fm	
	a _s	0.17 fm	
Lattice volume	N_s^3	8 ³	$ ightarrow 12^3$
Critical Temp	T _c	$1/33.5a_{ au}$	210MeV
1/Temperature	$N_{ au}$	16	$T\sim 2.1T_c$
		18	$T\sim 1.9 T_c$
		20	$T\sim 1.7 T_c$
		24	$T\sim 1.4 T_c$
		32	$T\sim 1.05 T_c$
		33 28	$T \sim 1.02 \dots 1.2 T_c$
		80	$T\sim 0$

Reconstructed correlators

Reconstructed correlator is defined as

$$G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega$$

where K is the kernel

$$K(\tau, \omega, T) = rac{\cosh[\omega(\tau - 1/2T)]}{\sinh(\omega/2T)}$$

If $\rho(\omega; T) = \rho(\omega; T_r)$ then $G_r(\tau; T, T_r) = G(\tau; T)$

We use $N_{\tau} = 32$ as our reference temperature

 Background Results
 Reconstructed correlators

 MEM systematics
 MEM systematics

 ummary and outlook
 Temperature dependence

S-waves

Background Results wummary and outlook Results Results Reconstructed correlators MEM systematics Temperature dependence

P-waves

MEM systematics

- We performed analysis with a large range of default models m(ω):
 - $ightarrow m(\omega) = m_0 \omega^2$ with varying m_0
 - $ightarrow \ m(\omega) = m_0 \omega (1+\omega)$ with varying m_0
 - $\rightarrow m(\omega) = m_0 \omega$
 - $\rightarrow m(\omega) = m_0$
- If data are poor, MEM will give $ho(\omega) pprox \textit{m}(\omega)$
- Also varied energy cutoff, time range

MEM systematics

- We performed analysis with a large range of default models m(ω):
 - $ightarrow m(\omega) = m_0 \omega^2$ with varying m_0
 - $ightarrow m(\omega) = m_0 \omega (1+\omega)$ with varying m_0
 - $\rightarrow m(\omega) = m_0 \omega$
 - $\rightarrow m(\omega) = m_0$
- If data are poor, MEM will give $ho(\omega) pprox \textit{m}(\omega)$
- Also varied energy cutoff, time range
- Statistics analysis to determine width?

Reconstructed correlators MEM systematics Temperature dependence

Default model dependence

Reconstructed correlators MEM systematics Temperature dependence

Default model dependence

Background Reconstructed corre Results MEM systematics ummary and outlook Temperature depen

Statistics

Background Reconstructed correla Results MEM systematics ummary and outlook Temperature depende

Statistics

Using m0 = 16 — third peak appears for high statistics??

Background Rec Results ME Summary and outlook Ter

Reconstructed correlators MEM systematics Temperature dependence

P-wave systematics

Reconstructed correlators MEM systematics Temperature dependence

Systematics at $N_{ au} = 28$

Reconstructed correlators MEM systematics Temperature dependence

Systematics at $N_{\tau} = 24$

Reconstructed correlators MEM systematics Temperature dependence

Systematics at $N_{\tau} = 24$

Reconstructed correlators MEM systematics Temperature dependence

S-wave T dependence (η_c)

Reconstructed correlators MEM systematics Temperature dependence

S-wave T dependence (η_c)

Reconstructed correlators MEM systematics Temperature dependence

S-wave T dependence (η_c)

Reconstructed correlators MEM systematics Temperature dependence

S-wave T dependence (J/ψ)

 J/ψ (S-wave) melts at T > 400 MeV or $2T_c$?

Reconstructed correlators MEM systematics Temperature dependence

S-wave T dependence (J/ψ)

 J/ψ (S-wave) melts at T > 400 MeV or $2T_c$?

 Background
 Reconstructed correlators

 Results
 MEM systematics

 Summary and outlook
 Temperature dependence

P-waves

P-waves melt at T < 250 MeV or $1.2T_c$?

Outlook

Charm flow

- ightarrow Diffusion constant related to $\lim_{\omega
 ightarrow 0}
 ho_V(\omega)/\omega$
- $\rightarrow\,$ Can this be determined using MEM?
- ightarrow Use $m(\omega)=m_0\omega(b+\omega)$, vary b

Outlook

- Charm flow
 - ightarrow Diffusion constant related to $\lim_{\omega
 ightarrow 0}
 ho_V(\omega)/\omega$
 - $\rightarrow\,$ Can this be determined using MEM?
 - ightarrow Use $m(\omega) = m_0 \omega (b + \omega)$, vary b
- Nonzero momentum
 - $\rightarrow~$ Charmonium is produced at nonzero momentum
 - $\rightarrow\,$ Transverse momentum (and rapidity) distributions important to distinguish between models
 - \rightarrow Momentum dependent binding?
 - $\rightarrow\,$ Gives an additional window to transport properties
 - $\rightarrow~$ Simulations getting underway

Outlook

- Charm flow
 - ightarrow Diffusion constant related to $\lim_{\omega
 ightarrow 0}
 ho_V(\omega)/\omega$
 - $\rightarrow\,$ Can this be determined using MEM?
 - ightarrow Use $m(\omega) = m_0 \omega (b + \omega)$, vary b
- Nonzero momentum
 - $\rightarrow~$ Charmonium is produced at nonzero momentum
 - $\rightarrow\,$ Transverse momentum (and rapidity) distributions important to distinguish between models
 - \rightarrow Momentum dependent binding?
 - $\rightarrow\,$ Gives an additional window to transport properties
 - \rightarrow Simulations getting underway
- ► D and B mesons
- non-zero chemical potential

Beauty (and the beast?)

- Many b quarks will be produced at ALICE
- $T_d^{\gamma} \sim 5T_c$ hard to do on the lattice
- χ_b melts at $T_d^{\chi_b} \lesssim 1.2 T_c$?
- Use NRQCD and relativistic action, compare two approaches
- Simulations underway

Summary

- Charmonium S-waves survive to $T \sim 2T_c$
- P-waves melt at $T < 1.3T_c$
- Consistent with sequential suppression:
 - \rightarrow 60% of J/ψ production is direct, the rest is feed-down from ψ', χ_c
 - \rightarrow Observed suppression at SPS, RHIC is feed-down
 - \rightarrow Direct suppression not yet observed may be seen at ALICE?
- Charmonium regeneration complicates picture!

Summary

- Charmonium S-waves survive to $T \sim 2T_c$
- P-waves melt at $T < 1.3T_c$
- Consistent with sequential suppression:
 - \rightarrow 60% of J/ψ production is direct, the rest is feed-down from ψ', χ_c
 - \rightarrow Observed suppression at SPS, RHIC is feed-down
 - \rightarrow Direct suppression not yet observed may be seen at ALICE?
- Charmonium regeneration complicates picture!
- Systematic uncertainties:
 - $\rightarrow\,$ Dependence on default model?
 - $\rightarrow~$ Coarse lattice $\rightarrow~$ doubler peak uncomfortably close
 - $\rightarrow~$ Cannot distinguish bound state vs threshold
 - \rightarrow Coarse lattice \rightarrow hard to reach high temperatures
- Simulations on finer lattices planned
- Simulations with lighter sea quarks in preparation