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Background

» J/1) suppression — a probe of the quark—gluon plasma?

» Quenched lattice results indicate that S-waves survive well
into the plasma phase

» Sequential charmonium suppression + recombination explains
experimental results?

» Uncertainty about which potential to use in potential models,
how to treat continuum

» How reliable are quenched lattice simulations?
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Quenched vs dynamical

Are quenched lattice results reliable?
T m 15T, T2 o THE2H
No D — D threshold in quenched QCD

Light quarks can catalyse QQ dissociation so it occurs at
lower temperature
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Lower T, lower Ty — conspire to give the same T4/ T.?
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Potential models indicate little change in T4/ T,

v
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Quenched vs dynamical

Are quenched lattice results reliable?

v

TN=0 o 1 5T N2 TNe=2 o TNr=2+1

No D — D threshold in quenched QCD

Light quarks can catalyse QQ dissociation so it occurs at
lower temperature

v

v

v

Lower T, lower Ty — conspire to give the same T4/ T.?

v

Potential models indicate little change in T4/ T,

v

Only dynamical lattice calculations can give the answer
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Dynamical anisotropic lattices

» A large number of points in time direction required
» For T =2T., O(10) points = a; ~ 0.025 fm

» Far too expensive with isotropic lattices as = a;!
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Dynamical anisotropic lattices

» A large number of points in time direction required
» For T =2T., O(10) points = a; ~ 0.025 fm
» Far too expensive with isotropic lattices as = a;!

» Independent handle on temperature



Background Quenched vs dynamical

Spectral functions

Dynamical anisotropic lattices

A large number of points in time direction required
For T =2T,, O(10) points = a; ~ 0.025 fm

Far too expensive with isotropic lattices a5 = a;!

vV v v Y

Independent handle on temperature

v

Introduces 2 additional parameters
Non-trivial tuning problem [PRD 74 014505 (2006)]

v
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Spectral functions

» contain information about the fate of hadrons in the medium
— stable states p(w) ~ d(w — m)
— resonances or thermal width p(w) ~ Lorentzian...
— continuum above threshold

» can be used to extract transport coefficents
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Spectral functions

» contain information about the fate of hadrons in the medium

— stable states p(w) ~ d(w — m)
— resonances or thermal width p(w) ~ Lorentzian...
— continuum above threshold

» can be used to extract transport coefficents

» pr(w, p) related to euclidean correlator Gr(7, p) according to

61(r:9) = [ prleonp)

» an ill-posed problem — requires a large number of time slices

» use Maximum Entropy Method to determine most likely p(w)
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Simulation parameters

[arXiv:0705.2198]
Light quarks my/m, 0.54

Anisotropy & 6
Lattice spacing a, 0.025fm
as 0.17 fm

Lattice volume N3 83 — 123

Critical Temp T, 1/33.5a, 210MeV

1/Temperature N, 16 T~21T,
18 T ~19T,
20 T~17T.
24 T ~14T,
32 T ~1.05T,
33...28 T ~1.02...1.27,
80 T~0
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Reconstructed correlators

Reconstructed correlator is defined as

G (r; T, T,) = / plw; THK(m,w, T)dw
0

where K is the kernel

cosh[w(rT —1/2T)]

Kl T = sinh(w/2T)

If p(w; T) = p(w; T;) then G(7; T, T,;) = G(7; T)

We use N = 32 as our reference temperature
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S-waves
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Results

P-waves

G/IG

GIG
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MEM systematics

» We performed analysis with a large range of
default models m(w):
— m(w) = mew? with varying mg
— m(w) = mow(1l + w) with varying mq
— m(w) = mow
m(

— m(w) = mg

» If data are poor, MEM will give p(w) ~ m(w)

» Also varied energy cutoff, time range
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MEM systematics

» We performed analysis with a large range of
default models m(w):

w) = mow? with varying my

— m(

— m(w) = mow(1l + w) with varying mq
m(
m(

— m(w) = mow
— m(w) = mg

» If data are poor, MEM will give p(w) ~ m(w)
» Also varied energy cutoff, time range

» Statistics analysis to determine width?
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Default model dependence
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Default model dependence
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Statistics
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Statistics
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Using m0 = 16 — third peak appears for high statistics??
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P-wave systematics

13 T T T T T T | T T
- — m(®)=0.1e?
i %c 1 — m(w) = 2.00?
m=0.092 ! --- m{w) = 8.0e?
- |1} m(w) = 0.00066
o - - m(w)=0.1776m
3 g
@ =
=% i
S -
! ! | ]
0

14 /22



Reconstructed correlators
Results MEM systematics

Temperature dependence

Systematics at N, = 28
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Systematics at N, = 24
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Systematics at N, = 24
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S-wave T dependence (7.)
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S-wave T dependence (7.)
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S-wave T dependence (7.)
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S-wave T dependence (J/v))
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J/1 (S-wave) melts at T > 400 MeV or 27,7
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S-wave T dependence (J/v))
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J/1 (S-wave) melts at T > 400 MeV or 27,7
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P-waves melt at T < 250 MeV or 1.27.7
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Summary and outlook

Outlook

» Charm flow

— Diffusion constant related to lim,_¢ pv(w)/w
— Can this be determined using MEM?
— Use m(w) = mow(b + w), vary b
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» Nonzero momentum

— Charmonium is produced at nonzero momentum

— Transverse momentum (and rapidity) distributions important
to distinguish between models

— Momentum dependent binding?

— Gives an additional window to transport properties

— Simulations getting underway
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Outlook

» Charm flow
— Diffusion constant related to lim,_¢ pv(w)/w
— Can this be determined using MEM?
— Use m(w) = mow(b + w), vary b

» Nonzero momentum

— Charmonium is produced at nonzero momentum

— Transverse momentum (and rapidity) distributions important
to distinguish between models

— Momentum dependent binding?

— Gives an additional window to transport properties

— Simulations getting underway

D and B mesons

v

v

non-zero chemical potential
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Summary and outlook

Beauty (and the beast?)

Many b quarks will be produced at ALICE
T ~5T. — hard to do on the lattice
xp melts at T} <1.27.7

Use NRQCD and relativistic action,
compare two approaches

vV v v Y

v

Simulations underway
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Summary

» Charmonium S-waves survive to T ~ 2T,
» P-waves melt at T < 1.37,
» Consistent with sequential suppression:

— 60% of J/v production is direct,

the rest is feed-down from 9/, x.

— Observed suppression at SPS, RHIC is feed-down

— Direct suppression not yet observed — may be seen at ALICE?
» Charmonium regeneration complicates picture!



Summary and outlook

Summary
» Charmonium S-waves survive to T ~ 2T,
» P-waves melt at T < 1.37,
» Consistent with sequential suppression:
— 60% of J/v production is direct,
the rest is feed-down from 9/, x.
— Observed suppression at SPS, RHIC is feed-down
— Direct suppression not yet observed — may be seen at ALICE?
» Charmonium regeneration complicates picture!
» Systematic uncertainties:
— Dependence on default model?
— Coarse lattice — doubler peak uncomfortably close
— Cannot distinguish bound state vs threshold
— Coarse lattice — hard to reach high temperatures
» Simulations on finer lattices planned
» Simulations with lighter sea quarks in preparation
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