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Introduction

Simulation methods, based on importance sam-
pling, fail for QCD at finite quark-/baryon-number
density. If we use a quark-number chemical po-
tential µ to produce finite density, the fermion de-
terminant becomes complex. If we use canonical
ensemble methods, the projection on to states of
definite quark number gives rise to a sign problem.

Some progress has been made in circumvent-
ing these problems for small µ, close to the finite-
temperature transition, the region of relevance to
heavy-ion colliders, where the sign problems appear
to be under control. These methods include meth-
ods which exploit the analyticity in µ near µ = 0,
reweighting methods, canonical ensemble methods
and phase quenching. In this part of the phase dia-
gram, the most interesting feature is expected to be
the critical endpoint where the finite-temperature
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transition changes from a crossover to a first-order
phase transition at an Ising critical point.

We are performing simulations of phase-quenched
lattice QCD, i.e. lattice QCD where the fermion
determinant is replaced by its magnitude, at finite
µI = 2µ. For µ < mπ/2 it is expected that this
theory will have the same phase structure as full
QCD. We are simulating 3-flavour QCD close to
the critical mass (at µ = 0), where it was hoped
that this critical point might morph into the criti-
cal endpoint.

We are extending our simulations to examine
the equation-of-state (EOS) of phase-quenched QCD.
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Figure 1: Nature of finite temperature phase transition if mc

increases with µ(µI).
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Phase-Quenched Lattice QCD

The staggered quark action for lattice QCD with
Nf quark flavours at finite chemical potential µ, ex-
pressed in terms of the pseudo-fermion field χ is:

Spf = χ†M−Nf/4χ

where
M = D/(µ) +m

and D/(µ) is the standard staggered-quark D/ with
the links in the +t direction multiplied by eµ and
those in the −t direction multiplied by e−µ.

The phase-quenched action is:

Spf = χ†M−Nf/8χ

where
M = M†M

which is positive (semi-)definite. For µ < mπ/2
its spectrum is expected to have a positive lower
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bound, except possibly on a set of configurations of
measure zero. It is useful to define

µI = 2µ

which has the interpretation of an isospin (I3)
chemical potential (at least for Nf even).

We now use the exact RHMC algorithm for our
simulations, using a speculative lower bound for the
spectrum of the Dirac operator.

At zero temperature, the effect of a small µI is
to lower the effective mass of one of the pions to

meff = mπ − µI .

Thus this pion becomes a massless Goldstone bo-
son at µI = mπ, and there is a phase transition
to a superfluid phase at this point. This super-
fluid phase persists to finite temperature, and its
boundary gives a natural limit to the validity of the
phase-quenched approximation. The large fluctu-
ations of the phase of the fermion determinant at
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this boundary are expected to suppress this phase
transition for full QCD. Such fluctuations have been
seen in random-matrix models which mimic QCD.
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Simulations and Results

We simulate 3-flavour QCD at small ‘isospin’
(I3) chemical potential µI , on 83 × 4, 123 × 4 and
163 × 4 lattices, in the neighbourhood of the fi-
nite temperature transition. Since mc(µI = 0) =
0.0265(3) (measured in these simulations), we run
with quark mass m = 0.020, 0.025, 0.030, 0.035.
We run at µI = 0.0, 0.2, 0.3 (µI < mπ). Since high
statistics are needed we perform runs of 300,000 tra-
jectories for each of 4 β values close to the transition
for each (m,µI) on the 123 × 4 lattice.

To determine the nature of the transition, we
measure the 4th-order Binder cumulant (B4) for
the chiral condensate. For any observable X ,

B4(X) =
〈(X − 〈X〉)4〉

〈(X − 〈X〉)2〉2
. (1)

Since we only have stochastic estimators for 〈ψ̄ψ〉,
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we need at least 4 independent estimators for each
configuration – we use 5.

If there is a critical endpoint at small µI form >
mc(0), then the Binder cumulant should decrease
from its crossover value B4 = 3 passing through
the Ising value B4 = 1.604(1) at the endpoint, and
falling towards its first-order value B4 = 1 as µI is
increased. The ‘data’ form = 0.035 andm = 0.030
do not show this. In fact, B4 appears to increase
with increasing µI . At fixed physical quark mass,
this increase would be even more pronounced.
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Figure 2: Binder cumulant at T = Tc as a function of µ2

I at
m = 0.035.
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Figure 3: Binder cumulant at T = Tc as a function of µ2

I at
m = 0.030.
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Figure 4: Binder cumulant at T = Tc as a function of µ2

I at
m = 0.025.
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The chiral condensate is not the order parame-
ter (magnetization), since m 6= 0. For µI = 0, the
order parameter, a renormalization group scaling
operator will have the form

M = ψ̄ψ + ySg

where

Sg = 1 −
1

3
Re [Tr (UUUU)] .

For µI 6= 0, it will have the form

M = ψ̄ψ + xj30 + ySg

where j30 is the isospin (I3) density.
On large lattices, which we use makes no dif-

ference, but on finite lattices the correct choice of
M will show the smallest finite volume corrections.
One indication of how much error is incurred by us-
ing ψ̄ψ instead of M is how close the intersection
of the graphs of Binder cumulants is to the Ising
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value. The plots of B4(ψ̄ψ) at fixed µI indicate
that choosing x = y = 0 is probably adequate.

µI mc(µI)
0.0 0.0265(3)
0.2 0.0259(5)
0.3 0.0256(4)

mc(µI), in lattice units, is almost independent
of µI . Since βc and hence Tc decrease with increas-
ing µI , mc(µI), in physical units, decreases with
increasing µI and so does not yield a critical end-
point.
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Figure 5: B4(ψ̄ψ) at µI = 0 as functions of mass.
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Figure 6: B4(ψ̄ψ) at µI = 0.2 as functions of mass.
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Figure 7: B4(ψ̄ψ) at µI = 0.3 as functions of mass.
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If our original fields (ψ̄ψ, Sg and j30) were the
true scaling fields, fluctuations of these quantities
would be independent. The graphs which follow
show that this is not so.
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Figure 8: ψ̄ψ versus Sg for each configuration on a 123 × 4
lattice at m = 0.03, µI = 0.3, β = 5.129.
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Figure 9: j3

0
versus Sg for each configuration on a 123 × 4

lattice at m = 0.03, µI = 0.3, β = 5.129.
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The chiral susceptibility is defined by

χψ̄ψ =
V

T
〈〈ψ̄ψ2〉 − 〈ψ̄ψ〉2〉 (2)

where the ψ̄ψs on the right-hand side are lattice
averaged quantities.

Finite size scaling at the critical point yields

χψ̄ψ(L, Tc) = L
γ
ν χ̃ (3)

This means that if we plot L−
γ
νχψ̄ψ(L, Tc) as func-

tions of m for different Ls, the curves should in-
tersect at the critical point. The graphs of this
quantity for L = 8 and L = 12 for each µI , do
indicate that the curves cross somewhere between
m = 0.025 and m = 0.03 consistent with our es-
timates of the positions of the critical points from
the Binder cumulants. We take γ = 1.237 and
ν = 0.630 as the 3-D Ising model critical indices.
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Figure 10: Finite size scaling for the peak of the chiral sus-
ceptibilities at µI = 0
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Figure 11: Finite size scaling for the peak of the chiral sus-
ceptibilities at µI = 0.2

23



Figure 12: Finite size scaling for the peak of the chiral sus-
ceptibilities at µI = 0.3
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Equation-of-State

The equation-of-state (EOS) expresses the pres-
sure p, the entropy density s and the energy density
ε as functions of temperature T and µI . The pres-
sure p is simply related to the partition function
through:

p =
T

V
lnZ(T, µI). (4)

However, we do not actually measure the parti-
tion function Z in our simulations, only observables.
Z(T, 0) can be calculated by numerically integrat-
ing

d lnZ

dβ
= 〈6

V

T
Sg〉 (5)

We can then numerically integrate

d lnZ

dµI
= 〈

Nf
8

V

T
j30〉 (6)

at constant β, where I3 is the the isospin of the
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configuration, to obtain Z(T, µI).
To obtain T in physical units requires knowl-

edge of the running of the coupling constant (β =
β(a)). This is determined at µI = 0.

Once this running of the coupling constant is
known, this can be used to determine ε, since

ε =
T 2

V

∂

∂T
lnZ (7)

We are currently performing simulations on 123×
4 lattices at m = 0.03. At each of a chosen set of
β values we perform simulations at sufficient values
of µI , to enable us to determine the EOS outside of
the superfluid region.

The necessary zero-temperature subtractions will
be made using simulations on 123 × 24 lattices at
the same βs used at finite temperature, and µI = 0.
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Figure 13: Isospin density as functions of µI at fixed β values
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Figure 14: Isospin density as functions of µI at fixed β values
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Discussion and conclusions

• The phase-quenched approximation to lattice QCD
at small chemical potential µ < mπ/2, appears
to preserve the phase structure.

• There does not appear to be a critical endpoint
in this region. This agrees with analytic continu-
ation methods (de Forcrand and Philipsen). The
critical mass mc(µI) in lattice units appears to
be almost independent of µI . This means that
it will decrease in physical units.

• Does increasing µI soften the finite temperature
transition simply because it reduces the chiral
flavour symmetry?

• Better determination of the order parameter (mag-
netization) is needed. The fact that the Binder
cumulants of the chiral condensate for different
lattice sizes intersect very close to the Ising value
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appears to justify using the chiral condensate in-
stead of the order parameter.

• Using the exact RHMC algorithm is essential for
reliable predictions.

• The Fodor and Katz determination of the critical
endpoint from reweighting is TE = 162(2) MeV
and µ = 120(13) MeV. Since µ > mπ/2 this
is beyond the reach of both phase-quenched and
analytic-continuation methods.

• The phase quenched approximation appears to
be a good starting point for reweighting. Need
better methods of approximating the fermion de-
terminant (or at least its phase).

• We are performing simulations along lines of con-
stant β to determine the equation-of-state for
phase-quenched QCD to compare with that for
full QCD. At low βs we are restricted to µI <
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mπ. At high βs where the system is in the
plasma phase for all µIs, we can cover the whole
range of µI . What can we learn from the reso-
nance gas model and χPT?

• Our χQCD action at finite µ in the phase-quenched
approximation would appear to be a better start-
ing point than the conventional action.

• Clearly better methods are needed for QCD at
finite baryon-/quark-number density.

These simulations are performed on Tungsten and
Copper at NCSA, Bassi and Jacquard at NERSC,
DataStar at SDSC/NPACI, and Jazz and Linux
PCs at Argonne.
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