Lattice 2007, Regensburg

Extreme QCD 2007, Frascati

Phase-Quenched Lattice QCD at Finite Density
and Temperature

D. K. Sinclair and J. B. Kogut

e Introduction

e Phase-Quenched Lattice QCD
e Simulations and Results

e Equation-of-State

e Discussion and conclusions



Introduction

Simulation methods, based on importance sam-
pling, fail for QCD at finite quark-/baryon-number
density. If we use a quark-number chemical po-
tential 1 to produce finite density, the fermion de-
terminant becomes complex. If we use canonical
ensemble methods, the projection on to states of
definite quark number gives rise to a sign problem.

Some progress has been made in circumvent-
ing these problems for small u, close to the finite-
temperature transition, the region of relevance to
heavy-ion colliders, where the sign problems appear
to be under control. These methods include meth-
ods which exploit the analyticity in © near u = 0,
reweighting methods, canonical ensemble methods
and phase quenching. In this part of the phase dia-
oram, the most interesting feature is expected to be
the critical endpoint where the finite-temperature
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transition changes from a crossover to a first-order
phase transition at an Ising critical point.

We are performing simulations of phase-quenched
lattice QCD, i.e. lattice QCD where the fermion
determinant is replaced by its magnitude, at finite
pur = 2u. For o < my/2 it is expected that this
theory will have the same phase structure as full
QCD. We are simulating 3-flavour QCD close to
the critical mass (at p = 0), where it was hoped
that this critical point might morph into the criti-
cal endpoint.

We are extending our simulations to examine
the equation-of-state (EOS) of phase-quenched QCD.
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Figure 1: Nature of finite temperature phase transition if m,.
increases with p(ur).



Phase-Quenched Lattice QCD

The staggered quark action for lattice QCD with
Ny quark flavours at finite chemical potential p, ex-
pressed in terms of the pseudo-fermion field  is:

Sy = XMy
where
M = [Xp) +m
and IXp) is the standard staggered-quark D with
the links in the 4+t direction multiplied by e* and

those in the —t direction multiplied by e™#.
The phase-quenched action is:

5, = N TVRIILN
where
M= MM
which is positive (semi-)definite. For p < mgy/2

its spectrum is expected to have a positive lower
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bound, except possibly on a set of configurations of
measure zero. It i1s useful to define

pr = 2p
which has the interpretation of an isospin ([3)
chemical potential (at least for N even).

We now use the exact RHMC algorithm for our
simulations, using a speculative lower bound for the
spectrum of the Dirac operator.

At zero temperature, the effect of a small py is
to lower the effective mass of one of the pions to

Meff = Mg — [
Thus this pion becomes a massless Goldstone bo-
son at puy = myg, and there is a phase transition
to a superfluid phase at this point. This super-
fluid phase persists to finite temperature, and its
boundary gives a natural limit to the validity of the
phase-quenched approximation. The large fluctu-
ations of the phase of the fermion determinant at
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this boundary are expected to suppress this phase
transition for full QCD. Such fluctuations have been
seen in random-matrix models which mimic QCD.



Simulations and Results

We simulate 3-flavour QCD at small ‘isospin’
(I3) chemical potential 7, on 8 x 4, 123 x 4 and
16 x 4 lattices, in the neighbourhood of the fi-
nite temperature transition. Since me(uy = 0) =
0.0265(3) (measured in these simulations), we run
with quark mass m = 0.020,0.025,0.030, 0.035.
We run at py = 0.0,0.2,0.3 (u; < my). Since high
statistics are needed we perform runs of 300,000 tra-
jectories for each of 4 3 values close to the transition
for each (m, p17) on the 123 x 4 lattice.

To determine the nature of the transition, we
measure the 4th-order Binder cumulant (By) for
the chiral condensate. For any observable X,

(X — (X)) N
(X = (X))2)?

By(X) =

Since we only have stochastic estimators for (1)),
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we need at least 4 independent estimators for each
configuration — we use 5.

If there is a critical endpoint at small p 7 for m >
m¢(0), then the Binder cumulant should decrease
from its crossover value B4, = 3 passing through
the Ising value By = 1.604(1) at the endpoint, and
falling towards its first-order value By =1 as ug is
increased. The ‘data’ for m = 0.035 and m = 0.030
do not show this. In tact, B4 appears to increase
with increasing py. At fixed physical quark mass,
this increase would be even more pronounced.
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Figure 2: Binder cumulant at T = T, as a function of y7 at
m = 0.035.
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Figure 3: Binder cumulant at T = T, as a function of y7 at
m = 0.030.
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Figure 4: Binder cumulant at T = T, as a function of u7 at
m = 0.025.
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The chiral condensate is not the order parame-
ter (magnetization), since m # 0. For puy = 0, the
order parameter, a renormalization group scaling
operator will have the form

M = p +ySy

where
S, = 1— ;Re T (UUUTY].
For iy # 0, it will have the form
M = ) + 253 + yS,

where 53 is the isospin (I3) density:.

On large lattices, which we use makes no dit-
ference, but on finite lattices the correct choice of
M will show the smallest finite volume corrections.
One indication of how much error is incurred by us-
ing 1) instead of M is how close the intersection
of the graphs of Binder cumulants is to the Ising
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value. The plots of By(¢n)) at fixed p; indicate
that choosing x = y = 0 is probably adequate.

pr | me(pg)
0.0]0.0265(3)

0.210.0259(5)
0.3 0.0256(4)

me(pg), in lattice units, is almost independent
of ;7. Since B. and hence T, decrease with increas-
ing g, me(pg), in physical units, decreases with
increasing py and so does not yield a critical end-
point.
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Figure 5: By(1y1) at uy = 0 as functions of mass.
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Figure 6: By(y)) at uy = 0.2 as functions of mass.
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Figure 7: By(y)) at puy = 0.3 as functions of mass.
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If our original fields ()%, Sy and j3) were the
true scaling fields, fluctuations of these quantities
would be independent. The graphs which follow
show that this is not so.
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Figure 8: 1) versus S, for each configuration on a 123 x 4
lattice at m = 0.03, uy = 0.3, 8 = 5.129.
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Figure 9: j3 versus S, for each configuration on a 12% x 4
lattice at m = 0.03, uy = 0.3, 8 = 5.129.
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The chiral susceptibility is defined by
Voo )
Xy = 7 {(W00%) = (¥)°) 2)

where the s on the right-hand side are lattice
averaged quantities.
Finite size scaling at the critical point yields

N
X@E@p([h Tc) = Lvyx (3>

This means that if we plot L_%sz([” T¢) as func-

tions of m for different Ls, the curves should in-
tersect at the critical point. The graphs of this
quantity for L = 8 and L = 12 for each uj, do
indicate that the curves cross somewhere between
m = 0.025 and m = 0.03 consistent with our es-
timates of the positions of the critical points from
the Binder cumulants. We take v = 1.237 and
v = 0.630 as the 3-D Ising model critical indices.
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w=0 chiral susceptibility
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Figure 10: Finite size scaling for the peak of the chiral sus-
ceptibilities at pu; =0
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u=0.2 chiral susceptibility
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Figure 11: Finite size scaling for the peak of the chiral sus-
ceptibilities at pu; = 0.2
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1;=0.3 chiral susceptibility
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Figure 12: Finite size scaling for the peak of the chiral sus-
ceptibilities at u; = 0.3
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Equation-of-State

The equation-of-state (EOS) expresses the pres-
sure p, the entropy density s and the energy density
e as functions of temperature T" and py. The pres-
sure p is simply related to the partition function

through:
T

p=;Z(T, puy). (4)

However, we do not actually measure the parti-
tion function Z in our simulations, only observables.
Z(T,0) can be calculated by numerically integrat-

ng

dln Z V
= (6=5 5
i = (65 5)
We can then numerically integrate
d hl Z Nf V 3
= (—— §
=L 6)

at constant (3, where I3 is the the isospin of the
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configuration, to obtain Z(T', uy).

To obtain 7' in physical units requires knowl-
edge of the running of the coupling constant (3 =
B(a)). This is determined at uj; = 0.

Once this running of the coupling constant is
known, this can be used to determine €, since

_T7 0

We are currently performing simulations on 123 x
4 lattices at m = 0.03. At each of a chosen set of
[ values we perform simulations at sufficient values
of p7, to enable us to determine the EOS outside of
the superfluid region.

The necessary zero-temperature subtractions will
be made using simulations on 123 x 24 lattices at
the same (s used at finite temperature, and p7 = 0.
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Figure 13: Isospin density as functions of p; at fixed (8 values
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Figure 14: Isospin density as functions of p; at fixed 8 values
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Discussion and conclusions

e The phase-quenched approximation to lattice QCD
at small chemical potential y < my/2, appears
to preserve the phase structure.

e There does not appear to be a critical endpoint
in this region. This agrees with analytic continu-
ation methods (de Forcrand and Philipsen). The
critical mass m(py) in lattice units appears to
be almost independent of 7. This means that
it will decrease in physical units.

e Does increasing 7 soften the finite temperature
transition simply because it reduces the chiral
flavour symmetry?

e Better determination of the order parameter (mag-
netization) is needed. The fact that the Binder
cumulants of the chiral condensate for different
lattice sizes intersect very close to the Ising value
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appears to justify using the chiral condensate in-
stead of the order parameter.

e Using the exact RHMC algorithm is essential for
reliable predictions.

e The Fodor and Katz determination of the critical
endpoint from reweighting is Ty = 162(2) MeV
and p = 120(13) MeV. Since u > my/2 this
is beyond the reach of both phase-quenched and
analytic-continuation methods.

e The phase quenched approximation appears to
be a good starting point for reweighting. Need
better methods of approximating the fermion de-
terminant (or at least its phase).

e We are performing simulations along lines of con-
stant (3 to determine the equation-of-state for
phase-quenched QCD to compare with that for
full QCD. At low (s we are restricted to puy <
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my. At high Bs where the system is in the
plasma phase for all u s, we can cover the whole
range of 7. What can we learn from the reso-
nance gas model and yPT"

e Our yQCD action at finite p in the phase-quenched
approximation would appear to be a better start-
ing point than the conventional action.

e Clearly better methods are needed for QCD at
finite baryon-/quark-number density.

These simulations are performed on Tungsten and
Copper at NCSA, Bassi and Jacquard at NERSC,

DataStar at SDSC/NPACI, and Jazz and Linux
PCs at Argonne.
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