The QCD transition temperature from simulations on BlueGene L supercomputer at LLNL

Rajan Gupta T-8, Los Alamos National Lab

The HotQCD collaboration

(All HotQCD data are preliminary)

RHIC: What we don't know a priori

- The nature (order) of the transition between hadronic matter and QGP
- The transition temperature T_c
- The equation of state (at < T_c 5 T_c)
- The transport properties of the QGP
- Behavior of bound states (onia) in the QGP
- Collective excitations
- The process of hadronization
- The process of thermalization

QCD at finite temperature

HotQCD Collaboration: A unique US wide opportunity for simulating QCD at finite temperature using the BlueGene L Supercomputer at LLNL

- T. Battacharya (LANL)
- M. Cheng (Columbia)
- N. Christ (Columbia)
- C. DeTar (Utah)
- S. Gottlieb (Indiana)
- R. Gupta (LANL)
- U. Heller (APS)
- K. Huebner (BNL)
- C. Jung (BNL)
- F. Karsch (BNL/Bielefeld)
- E. Laermann (Bielefeld)

- L. Levkova (Utah)
- T. Luu (LLNL)
- R. Mawhinney (Columbia)
- P. Petreczky (BNL)
- D. Renfrew (Columbia)
- C. Schmidt (BNL)
- R. Soltz (LLNL)
- W. Soeldner (BNL)
- R. Sugar (UCSB)
- D. Toussaint (Arizona)
- P. Vranas (LLNL)

Timeline

- Developed collaboration with Ron Soltz and formulated project for *Blue Gene L* at LLNL (Nov-Dec 2005)
- Organized US wide meeting to explore doing RHIC phenomenology and Lattice QCD at LLNL (Feb 06)
- Developed white paper for calculation of T_c and EOS on the *Blue Gene L* (Feb – May 06)
- Got NNSA approval to run on *Blue Gene L* (July 06)
- Ported Asqtad and p4fat codes to Blue Gene L (Sept 06)
- Started N_T=8 lattice QCD simulations (Oct 06)
- Continual code Optimization
- ~10,000 trajectories simulated at 15 β for AsqTad & p4

Restrictive Environment

- Only T. Luu, R. Soltz and R. Gupta can access the machine or the data
- Minimal data can be brought into open
 - Print results in ASCI or print figures
 - Declassify
 - Scan to convert to digital for distribution

Blue Gene L at LLNL represents a 4-6 Teraflops sustained resource

HotQCD Collaboration: Goals

- Nature of the transition
 - Do deconfinement and χS restoration "coincide"?
- Transition temperature Tc
- Equation of State (EOS) at (μ =0, μ ≠0)
- Spectral Functions
- Spatial and temporal correlators versus T
- Transport coefficients of the quark gluon plasma

Order of the transitions and T_c

- Look for discontinuities, singularities, peaks in thermodynamics quantities
 - Polyakov line and its susceptibility
 - Chiral condensate $\langle \overline{\psi}\psi \rangle$ and its susceptibility
 - Quark number $\langle \overline{\psi} \gamma_0 \psi \rangle$ and its susceptibility
- Finite size scaling analysis (1st versus 2nd)

Previous Staggered simulations → For 2+1 (ud, s) quark flavors the transition is a crossover

Observables

Polyakov loop Quark number susceptibility

Chiral condensate Chiral susceptibility Deconfinement

χS Restoration

Issues with previous calculations (in 2005)

Calculations on coarse lattices: N_T=4,6 and/or small volumes. (a ~ 0.2- 0.13 fermi).

- Simulate N_T =4,6,8, ... and do a→0 extrapolation

• T_c with different actions (different observables) difference by ~ 20 MeV

Reduce uncertainty to ~ 5 MeV if transition T is unique

 Need simulations with 2+1 flavors with realistic light (up, down) quark masses holding strange quark mass fixed

- M_{ud} / m_s = 0.5, 0.2, 0.1 → (physical ~ 0.04)

Staggered fermions (detM^{1/4}): Creutz/Kronfeld at LAT07

Improving continuum limit results

- Control discretization errors (compare 2 different improved staggered actions)
 - Asqtad Staggered (MILC collaboration)
 - p4 staggered (RBC-Bielefeld collaboration)
 - Explore Domain wall fermions
- New simulations at N_T=8 with 2+1 flavors (m_{light} ≈ 0.1 m_s)
- Combine with ongoing/previous $N_T = 4,6$ simulations to perform $a \rightarrow 0$ extrapolation
- Precise determination of lattice scale

Status report: HOTQCD data sets

P4 action N_τ=8 simulations: Status 7/21/07

• Lattice Size $8 \times 32 \times 32 \times 32$ • Quark mass $m_l/m_s = 0.1$

β	a m _l	<i>T</i> [MeV]	# trajectories	
3.460	0.00313	154	10000	
3.490	0.00290	169	10000	
3.510	0.00259	179	11280	
3.540	0.00240	194	11440	
3.570	0.00212	209	12460	
3.600	0.00192	225	11790	
3.630	0.00170	241	12070	
3.660	0.00170	256	11190	
3.690	0.00150	271	10760	
3.760	0.00139	313	10920	
h3.525	0.00240	186	6510	
h3.530	0.00240	189	5450	
h3.535	0.00240	191	5140	
h3.540	0.00240	194	5410	
h3.545	0.00240	196	6280	
h3.550	0.00240	199	5790	
c3.525	0.00240	186	6120	
c3.530	0.00240	189	5530	
c3.535	0.00240	191	5750	
c3.540	0.00240	194	6260	
c3.545	0.00240	196	6250	
c3.550	0.00240	199	6520	

Asqtad action data set as of 7/21/07

Lattice Size $8 \times 32 \times 32 \times 32$; Quark mass $m_l/m_s = 0.1$

β=6/g ²	δt	Acceptance	$<\Delta s \exp(-\Delta s/2) > 10^3$		Total # trajectories
6.4580	0.04170	0.66	-4.9 +/-	9.4	12965
6.5000	0.04170	0.72	3.7	7.6	12990
6.5500	0.04170	0.76	-4.5	5.8	12720
6.6000	0.04170	0.78	-1.5	5.9	12405
6.6625	0.04170	0.79	8.1	5.2	12365
6.6500	0.04540	0.76	2.8	6.8	12445
6.6675	0.04540	0.75	3.9	6.1	12660
6.7000	0.04540	0.81	-9.7	5.8	12320
6.7600	0.04540	0.83	2.0	4.2	12530
6.8000	0.04540	0.84	-3.4	4.3	12195
6.8500	0.04540	0.86	2.2	3.3	12405
6.9000	0.04540	0.86	3.4	3.2	12470
6.9500	0.04540	0.86	1.5	3.6	12625
7.0000	0.04540	0.87	-2.9	3.0	12595
7.0800	0.04540	0.86	3.6	3.0	12790

About 70% of target 15000 trajectories (statistics) achieved

AsqTad calculations and deductions

R algorithm and finite size effects (Connected Chiral Susceptibility)

- Errors in data with R algorithm are small (below resolution)
- Finite size effects are most pronounced at low T

Finite volume correction:

(Disconnected chiral susceptibility)

Large spatial volume is important.

 $Ns = 4 N\tau \approx infinite$ volume

Singlet chiral susceptibility

Finite size effect tends to decrease Tc slightly

16^3: 184(2)MeV

32^3: 186(2)

Errors shown are only statistical for this fit ansatz!

Systematic errors yet to be determined.

Renormalized singlet susceptibility (Raw versus Wuppertal-Budapest method)

Small (few MeV) difference in peak position

Strange quark number susceptibility

It is more difficult to estimate Tc from fits to determine the inflection point than from a peak.

Polyakov Loop Data

Inflection point in P is difficult to locate accurately

Peak in susceptibility of P hard to distinguish from a plateau/shoulder by $N_{\tau}=8$.

Data with p4 action

P4: Line of constant physics (LCP)

- Use T=0 simulations
- $M_{ss} r_0 = 1.58 \ (M_{\pi} r_0 \approx 0.52 \rightarrow M_{\pi} \approx 220 \ MeV)$
- Quark mass $m_l/m_s = 0.1$ (real world ~0.04)
- Take $a \rightarrow 0$ along this LCP varying just the gauge coupling β

P4: Setting the lattice scale Jan van der Heide at LAT2007

 $r_0 = 0.469(7) \text{ fm}, \quad r_0 \sigma^{0.5} = 1.104(5), \quad r_0/r_1 = 1.463(7)$

Renormalized Polyakov Loop

$$\left\langle L_{R}\right\rangle = Z(\beta)^{N_{\tau}}\left\langle L_{Bare}\right\rangle$$

(Kostya Petrov at LAT07)

- Smooth behavior
- Nτ = 4,6,8 don't show large O(a²) effects

In all figures the band corresponds to the range T=185-195 MeV

Chiral Condensate: χS restoration

$$\Delta_{l} = \frac{\left\langle \bar{l}l \right\rangle_{T} - \frac{m_{l}}{m_{s}} \left\langle \bar{s}s \right\rangle_{T}}{\left\langle \bar{l}l \right\rangle_{T=0} - \frac{m_{l}}{m_{s}} \left\langle \bar{s}s \right\rangle_{T=0}}$$

- Subtraction to eliminate additive renormalization
- Sharp decrease in Δ reflects χ S restoration

N_{τ} =8: P4 consistent with AsqTAD

$T_{\chi S \text{ Restoration}} \approx T_{\text{Deconfinement}}$

Quark Number Susceptibility

$$\frac{\chi_{l,s}}{T^2} = \frac{1}{TV} \frac{\partial^2 \log Z}{\partial \mu_{l,s}^2}$$

- States carrying such quantum numbers $(\langle \overline{\psi}\gamma_0\psi \rangle \rightarrow baryon number/strangeness)$ are heavy at low T and light at high T. Probe confinement
- Do not require renormalization at $V=\infty$
- Peak in fourth derivative!

Quark Number Susceptibility P4 data consistent with AsqTAD

Determination of Tc from inflection point sensitive to

- Range of data points included in the fit (8 points)
- Fit function

$$\Delta_{\rm s,l}$$
 and $\chi_{\rm s}/{\rm T}^2$

- Smooth behaviour
- $N\tau = 4,6,8$ don't show large O(a²) effects
- Crossover at roughly the same T

 $0.35 \ 0.40 \ 0.45 \ 0.50 \ 0.55 \ 0.60 \ 0.65 \ 0.70 \ 0.75$

Chiral Susceptibility: $N_{\tau} = 4, 6, 8$

One flavor susceptibility for light (l = u,d) and strange (s) quarks:

Note: Isosinglet $\chi = \chi_{disconnected} + 2\chi_{connected}$

One flavor $\chi = \chi_{disconnected} + 4\chi_{connected}$

- Very Weak Volume dependence \rightarrow Crossover
- Peaks become sharper with ۲ increasing V and decreasing quark mass
- Peak shift towards smaller β

Chiral Susceptibility: $N_{\tau} = 8$

Chiral Susceptibility χ : N_{τ} = 8

Total Susceptibility for light (l = u,d) quarks:

Unrenormalized \Rightarrow only examine shape not value

Need more N_t =8 data to quantify [dis]agreement in the region of the peak before combining with N_t =4, 6 to extract T_c (a=0)

HotQCD: Future

- Complete Nτ=8 simulations
- Finish analysis of all the variables
- Combine N_τ=4,6,8 calculations
- Extract transition temperature at which bulk quantities show largest fluctuations
- Resolve Deconfinement versus χS restoration

Much progress with staggered 2+1 simulations in last 2 years

- Exact Algorithm -- RHMC
- Finite Volume
 - Ns \ge 4 N τ
 - Peaks become sharper with larger V
 - Height approx. independent of V (\rightarrow crossover)
- Renormalization of observables
- Improvement of action works
 - − (N τ =6,8) P4 and AsqTad ≈ (N τ =8,10) Stout
- Reaching physical masses
 - P4 and AsqTad (ml = 0.1ms); Stout (ml=0.04ms)
- Setting the scale with T=0 simulations – Using r_0 , f_{κ} (~10 MeV difference)
- Continuum extrapolations (N τ =4,6,8,....)

Remaining Issues

- Resolving $T_{deconfinement}$ and $T_{\chi SB}$ in $a \rightarrow 0$
- Improve determination of lattice scale

Fodor etal: different observables give different T_c

Issues with "best" calculations

Known shortcomings: too few data: 3-parameter fit to 4 data points for T_c determined at $m_\pi > 550~{
m MeV}$

no continuum extrapolation attempted yet; would like to see results in units of r_0

 $N_{\tau} = 4, 6, 8$, but small spatial volume for larger N_{τ} ; still large statistical errors on individual data points

only $N_{ au}=4$ and 6

only one quark mass; T_c determination partly based on determination of inflection points

chiral+deconfinement

Karsch Lat07

Stout Action: Summary (Fodor LAT2007)

Chiral susceptibility

 T_c =151(3)(3) MeV ΔT_c =28(5)(1) MeV

Quark number susceptibility

 T_c =175(2)(4) MeV ΔT_c =42(4)(1) MeV

Polyakov loop

 T_c =176(2)(4) MeV ΔT_c =38(5)(1) MeV

Stout Action versus p4/AsqTad

Chiral susceptibility

 T_c =151(3)(3) MeV ΔT_c =28(5)(1) MeV

Quark number susceptibility

 T_c =175(2)(4) MeV ΔT_c =42(4)(1) MeV

Polyakov loop

 T_c =176(2)(4) MeV ΔT_c =38(5)(1) MeV Main disagreement with p4 & AsqTad

> Tc determined from inflection point

Stout: Can normalization & scale explain the 25 MeV difference between $T_{\chi S Restoration}$ and $T_{deconfinement}$

Important Role of: Data at $N_{\tau}=8, 10$ Lattice scale? (Is $a(f_K) \approx a(r_0)$ as $a \rightarrow 0$?)

What next?

 Improve p4 and AsqTad continuum extrapolation (Finalize N_τ=8 HotQCD data)

• Final HotQCD data unlikely to change the current qualitative picture $T_{deconfinement} \approx T_{\chi SB}$ and lying in the band 185-195 MeV

- Resolve difference in $T_{\chi SB}$ between stout and hotQCD results