XTREME

Scale and Renormalization

Free Energies

Screening Masses

Entropy and Internal

Polyakov Loop Cou

Life after Deconfinement

Il Deserto Non-Perturbativo

Konstantin Petrov for RBC-Bielefeld

Niels Bohr Institute, KU and SDU

Extreme QCD

Overview

- KP and RBC/Bi, "Heavy Quark Thermodynamics", hep-lat/0701017, published **J. Phys. G**
- KP and RBC/Bi, "Thermodynamics of the static QQbar pair in full QCD", published in **PoS LAT06**, hep-lat/061004
- RBC/Bi, "Transition Temperature in QCD", published in Phys. Rev. D 74, 054507 (2006)
- ...with RIKEN-BNL-Columbia-Bielefeld Collaboration
- comparison with pure gauge and Nf=2 courtesy of Kaczmarek/Zantow 2002

- Focus on strong interactions around and far above deconfinement
- Motivated by RHIC physics (STAR / PHENIX)
- Details of screening phenomena are important
- as dynamics of sQGP is not understood
- which is an understatement
- Potential models make lattice ...
- ... an important input to phenomenology
- Validity of perturbation theory ...
- in the land of strong strong coupling?

- Focus on strong interactions around and far above deconfinement
- Motivated by RHIC physics (STAR / PHENIX)
- Details of screening phenomena are important
- as dynamics of sQGP is not understood
- which is an understatement
- Potential models make lattice ...
- ... an important input to phenomenology
- Validity of perturbation theory ...
- in the land of strong strong coupling?

- Focus on strong interactions around and far above deconfinement
- Motivated by RHIC physics (STAR / PHENIX)
- · Details of screening phenomena are important
- as dynamics of sQGP is not understood
- which is an understatement
- Potential models make lattice ...
- ... an important input to phenomenology
- Validity of perturbation theory ...
- in the land of strong strong coupling?

- Focus on strong interactions around and far above deconfinement
- Motivated by RHIC physics (STAR / PHENIX)
- · Details of screening phenomena are important
- as dynamics of sQGP is not understood
- which is an understatement
- Potential models make lattice ...
- ... an important input to phenomenology
- Validity of perturbation theory ...
- in the land of strong strong coupling?

Scale and Renormalization	Free Energies O	Screening Masses	Entropy and Internal Energy	Polyakov Loop	Coupling

- Improved Hardware
- Large Scale Simulation
- Multi-teraflop QCDOC (RIKEN/BNL) and APE (Bielefeld)
- Improved Action: P4 + Fat3 fermion action
- reduces cutoff effects
- reduces lattice-induced chiral symmetry violations
- Improved Algorithm: Rational Hybrid Monte-Carlo
- is exact [Kennedy/Clarke]
- factor of 10 speed-up compared to R-algorithm

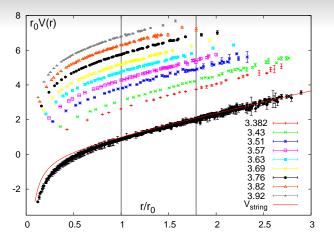
Scale and Renormalization	Free Energies O	Screening Masses	Entropy and Internal Energy	Polyakov Loop	Coupling

- Improved Hardware
- Large Scale Simulation
- Multi-teraflop QCDOC (RIKEN/BNL) and APE (Bielefeld)
- Improved Action: P4 + Fat3 fermion action
- reduces cutoff effects
- · reduces lattice-induced chiral symmetry violations
- Improved Algorithm: Rational Hybrid Monte-Carlo
- is exact [Kennedy/Clarke]
- factor of 10 speed-up compared to R-algorithm

Scale and Renormalization	Free Energies O	Screening Masses	Entropy and Internal Energy	Polyakov Loop	Coupling

- Improved Hardware
- Large Scale Simulation
- Multi-teraflop QCDOC (RIKEN/BNL) and APE (Bielefeld)
- Improved Action: P4 + Fat3 fermion action
- reduces cutoff effects
- · reduces lattice-induced chiral symmetry violations
- Improved Algorithm: Rational Hybrid Monte-Carlo
- is exact [Kennedy/Clarke]
- factor of 10 speed-up compared to R-algorithm

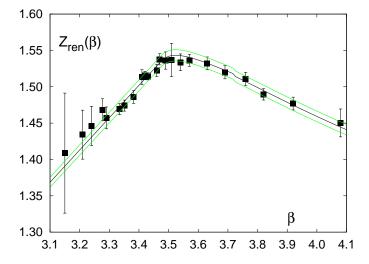
Scale and Renormalization	Free Energies O	Screening Masses	Entropy and Internal Energy	Polyakov Loop	Coupling


- Previous studies P.Petreczky/KP, Asqtad, N_t = 4,6, 3F [MILC]
- and Kaczmarek/Zantow, P4 (2F, $N_t = 4$)
- Full QCD, two light and one strange dynamical quarks
- Physical strange quark mass
- Almost physical quark masses [0.1 strange quark mass]
- Scale setting via zero temperature heavy quark potential (r₀)
- Heavy Quark physics
- EoS will be published soon

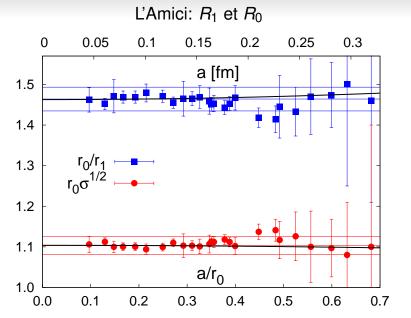
Scale and Renormalization	Free Energies O	Screening Masses	Entropy and Internal Energy	Polyakov Loop	Coupling

- Previous studies P.Petreczky/KP, Asqtad, N_t = 4,6, 3F [MILC]
- and Kaczmarek/Zantow, P4 (2F, $N_t = 4$)
- Full QCD, two light and one strange dynamical quarks
- Physical strange quark mass
- Almost physical quark masses [0.1 strange quark mass]
- Scale setting via zero temperature heavy quark potential (r₀)
- Heavy Quark physics
- EoS will be published soon

Scale and Renormalization	Free Energies O	Screening Masses	Entropy and Internal Energy	Polyakov Loop	Coupling


- Previous studies P.Petreczky/KP, Asqtad, N_t = 4,6, 3F [MILC]
- and Kaczmarek/Zantow, P4 (2F, $N_t = 4$)
- Full QCD, two light and one strange dynamical quarks
- Physical strange quark mass
- Almost physical quark masses [0.1 strange quark mass]
- Scale setting via zero temperature heavy quark potential (r₀)
- Heavy Quark physics
- EoS will be published soon

is well-described by string model prediction at large separations


$$V(r) = -\frac{\pi}{12r} + \sigma r$$

Renormalization: $V_{(T=0)} = -log(Z_{ren}(\beta)^2 \frac{W(r,\tau)}{W(r,\tau+1)})$

Blow Up

Free Energies

How do we study Heavy Quarks?

$$L(\vec{x}) = \frac{1}{3} \mathscr{P} \exp \int_0^{1/T} dx_0 A(x, x_0)$$

Determined from Polyakov Loop correlations

$${F_1(|x|,T)/T} = -\ln \langle {
m Tr} {L}(ec{x}) {L^\dagger(0)}
angle [{\it McLerran}]$$

- Straightforward physical interpretation in Coloumb Gauge [Philipsen]
- Gauge invariant at infinite separation of Q and Qbar
- Renormalization required

Free Energies

How do we study Heavy Quarks?

$$L(\vec{x}) = \frac{1}{3} \mathscr{P} \exp \int_0^{1/T} dx_0 A(x, x_0)$$

Determined from Polyakov Loop correlations

$${F_1(|x|,T)/T} = -\ln \langle {
m Tr} {L}(ec{x}) {L^\dagger(0)}
angle [{\it McLerran}]$$

- Straightforward physical interpretation in Coloumb Gauge [Philipsen]
- Gauge invariant at infinite separation of Q and Qbar
- Renormalization required

Free Energies

How do we study Heavy Quarks?

$$L(\vec{x}) = \frac{1}{3} \mathscr{P} \exp \int_0^{1/T} dx_0 A(x, x_0)$$

Determined from Polyakov Loop correlations

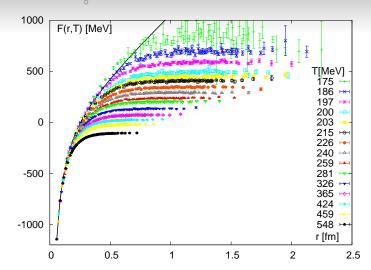
$${F_1(|x|,T)/T} = -\ln \langle {
m Tr} {L}(ec{x}) {L^\dagger(0)}
angle [{\it McLerran}]$$

- Straightforward physical interpretation in Coloumb Gauge [Philipsen]
- Gauge invariant at infinite separation of Q and Qbar
- Renormalization required

Renormalization

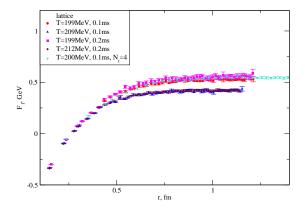
• Two schemes for renormalization

- either short distance related
- · assume that media is irrelevant at short distances
- force F₁ be zero temperature potential
- at shortest availible lattice distance
- Or
- renormalization factors obtained in T=0
- may be used at finite temperature
- with appropriate Nt power
- Which one is better?

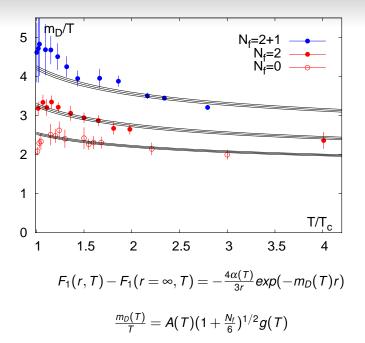

Renormalization

Two schemes for renormalization

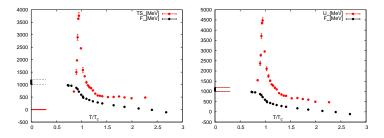
- either short distance related
- · assume that media is irrelevant at short distances
- force F₁ be zero temperature potential
- at shortest availible lattice distance
- Or
- renormalization factors obtained in T=0
- may be used at finite temperature
- with appropriate Nt power
- Which one is better?



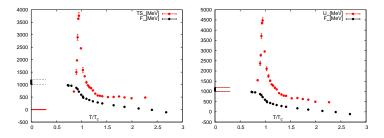
renormalization by factors $Z_r(g^2)$ obtained at T=0 is equivalent to matching with T=0 potential at short distances!


$$exp(-F_1(r,T)/T) = Z_r(g^2)^{2N_\tau} \langle Tr(L(x)L(x+r)^{\mathsf{T}}) \rangle$$

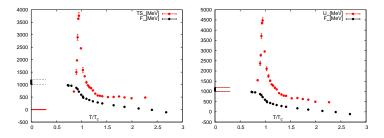
Polyakov Loop Coup


Checks and Balances: Scaling with m_q and N_t

- Small cutoff effects
- Light quark mass scaling is also good



Beyond the Gluonic Clouds


- big jump in critical region
- in potential models would mean 2-3x increase in effective mass
- Explanation? Correlation length higher in crossover area
- screening gluon clouds are bigger near transition
- enters perturbative regime at about 250MEV

Beyond the Gluonic Clouds

- big jump in critical region
- in potential models would mean 2-3x increase in effective mass
- Explanation? Correlation length higher in crossover area
- screening gluon clouds are bigger near transition
- enters perturbative regime at about 250MEV

Beyond the Gluonic Clouds

- big jump in critical region
- in potential models would mean 2-3x increase in effective mass
- Explanation? Correlation length higher in crossover area
- screening gluon clouds are bigger near transition
- enters perturbative regime at about 250MEV

• Very nice oder parameter in pure glue

- Still interesting in full QCD
- Loved by model-builders
- needs renormalization [we all do]

$$L_{ren}=(Z_R(g^2))^{N_ au}L_{lat}$$

• we define it through already renormalized F_1 $L_{ren} = exp(-F_{r=\infty}/2T)$

- Very nice oder parameter in pure glue
- Still interesting in full QCD
- Loved by model-builders
- needs renormalization [we all do]

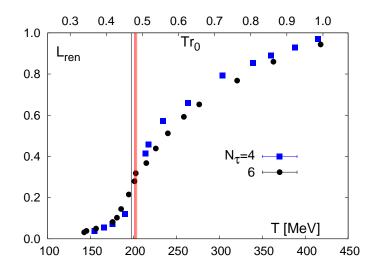
$$L_{ren}=(Z_R(g^2))^{N_ au}L_{lat}$$

• we define it through already renormalized F_1 $L_{ren} = exp(-F_{r=\infty}/2T)$

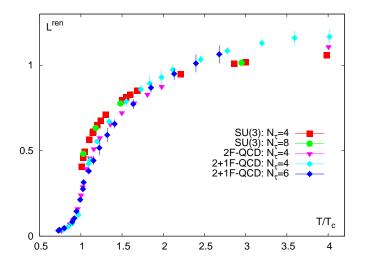
- Very nice oder parameter in pure glue
- Still interesting in full QCD
- Loved by model-builders
- needs renormalization [we all do]

 $L_{ren}=(Z_R(g^2))^{N_ au}L_{lat}$

• we define it through already renormalized F_1 $L_{ren} = exp(-F_{r=\infty}/2T)$

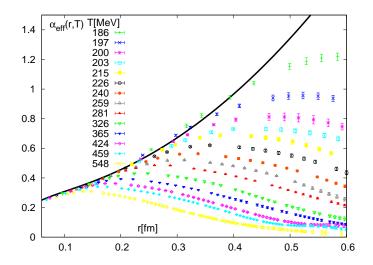

- Very nice oder parameter in pure glue
- Still interesting in full QCD
- Loved by model-builders
- needs renormalization [we all do]

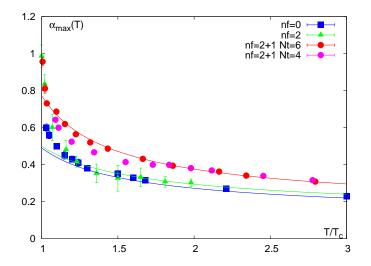
$$L_{ren}=(Z_R(g^2))^{N_ au}L_{lat}$$


• we define it through already renormalized F₁

$$L_{ren} = exp(-F_{r=\infty}/2T)$$

Renormalized Polyakov Loop in physical units




Flavour-dependence is largely due to T_c difference

Coupling

Zabriskie Coupling

Scale and Renormalization

Free Energies

Screening Masse

Entropy and Internal Ene

Polyakov Loop Coupling

- Interaction in hot medium gets screened at increasingly short distances
- Scaling is good to very good
- Our two renormalization schemes match very well
- Screening masses will only slowly reach perturbative limit
- Entropy and Internal Energy have sharp peak
- Critical behaviour ends at 250MeV
- Can define and calculate Renormalized Polyakov Loop
- Pretty good scaling with N_{τ}
- running coupling $lpha_s$ starts at around 1 and decreases slowly
- stronger than in 2-flavour case
- R.I.P. Michelangelo Antonioni

- Interaction in hot medium gets screened at increasingly short distances
- Scaling is good to very good
- Our two renormalization schemes match very well
- · Screening masses will only slowly reach perturbative limit
- Entropy and Internal Energy have sharp peak
- Critical behaviour ends at 250MeV
- Can define and calculate Renormalized Polyakov Loop
- Pretty good scaling with N_τ
- running coupling $lpha_s$ starts at around 1 and decreases slowly
- stronger than in 2-flavour case
- R.I.P. Michelangelo Antonioni

- Interaction in hot medium gets screened at increasingly short distances
- Scaling is good to very good
- Our two renormalization schemes match very well
- · Screening masses will only slowly reach perturbative limit
- Entropy and Internal Energy have sharp peak
- Critical behaviour ends at 250MeV
- Can define and calculate Renormalized Polyakov Loop
- Pretty good scaling with N_τ
- running coupling α_s starts at around 1 and decreases slowly
- stronger than in 2-flavour case
- R.I.P. Michelangelo Antonioni

- Interaction in hot medium gets screened at increasingly short distances
- Scaling is good to very good
- Our two renormalization schemes match very well
- · Screening masses will only slowly reach perturbative limit
- Entropy and Internal Energy have sharp peak
- Critical behaviour ends at 250MeV
- Can define and calculate Renormalized Polyakov Loop
- Pretty good scaling with N_τ
- running coupling $lpha_s$ starts at around 1 and decreases slowly
- stronger than in 2-flavour case
- R.I.P. Michelangelo Antonioni