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Overview:

• Perturbative expansion of the average plaquette in pure gauge SU(3)
and complex singularities in the β = 2N/g2 plane. Two models.

• Zeros of the partition function in the complex β plane (Fisher’s zeros).

• New methods for complex values of ∆β where the MC reweighting
calculation < e−∆βS > is not reliable. New definition of the region of
confidence. Fits based on the assumption that

ln(density of state (S)) ≃ polynomial in S. (arXiv.0708.0438)

• Application of the new methods for pure gauge SU(2) and SU(3) on L4

and 4 × L3 lattices and comparison with existing results.
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Lattice Perturbation Theory (SU(3))

P (1/β) =
∑10

m=0 bmβ−m + . . . .

(F. Di Renzo et al. JHEP 10 038, P. Rakow Lat. 05)

Series analysis suggests a singularity: P ∝ (1/5.74 − 1/β)1.08

(Horsley et al, Rakow, Li and YM)

Not expected: zero radius of convergence (the plaquette changes
discontinuously at β → ±∞ (Li, YM PRD 71))

Not seen in 2d derivative of P (would requires massless glueballs!)
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A Small Window for Complex Singularities

A simple alternative: the critical point in the fundamental-adjoint plane has
mean field exponents and in particular α = 0. On the βadj. = 0 line, we
assume an approximate logarithmic behavior (mean field)

−∂P/∂β ∝ ln((1/βm − 1/β)2 + Γ2) , (1)

This implies the approximate form (with params. to be fitted from the pert.
series)

∂2P/∂β2 ≃ −C
(1/βm − 1/β)

β3((1/βm − 1/β)2 + Γ2)
(2)

Typical Fits: βm ≃ 5.78, Γ ≃ 0.006 (i.e Im β ≃ 0.2), and C ≃ 0.15
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Bounds on Imaginary part (Li and YM PRD 73)

The stability of C and βm can be used to set a lower bound on Γ.
Given that the approximate form of ∂2P/∂β2 in Eq. (2) has extrema at
1/β = 1/βm±Γ. As we do not observe values larger than 0.3 near β = 5.75
we get the approximate bound C

2β3
mΓ

< 0.3. Large values of Γ would affect

the low order coefficients. We never found fitted values of Γ close to 0.01.

0.001 < Γ < 0.01 . (3)

This suggests zeroes of the partition function in the complex β plane with

0.03 ≃ 0.001β2
m < Imβ < 0.01β2

m ≃ 0.33 (4)
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Large order extrapolations (YM PRD 74)

Model 1:

∑

k=0 bkβ
−k ≃ C(Li2(β

−1/(β−1
m + iΓ)) + h.c,

Li2(x) =
∑

k=0 xk/k2 .

We fixed Γ = 0.003 and obtained C = 0.0654 and βm=5.787 using of a9

and a10. The low order coefficients depend very little on Γ (when Γ < 0.01),
larger series are needed!

Very good predictions of the values of a8, a7, . . . !

5



order predicted numerical rel.error
1 0.7567 2 -0.62
2 1.094 1.2208 -0.10
3 2.811 2.961 -0.05
4 9.138 9.417 -0.03
5 33.79 34.39 -0.017
6 135.5 136.8 -0.009
7 575.1 577.4 -0.004
8 2541 2545 -0.0016
9 exact 11590
10 exact 54160

Also a16 = 7.7 108 while from Fig. 1 of P. Rakow Lattice 2006 a16 =
0.00027 × 616 = 7.6 108;

Feynman diagram interpretation ???
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Model 2 (Mueller 93, di Renzo 95):

∑

k=0

bkβ̄
−k ≃ K

∫ t2

t1

dte−β̄t (1 − t 33/16π2)−1−204/121 (5)

β̄ = β(1 + d1/β + . . . ) (6)

t1 = 0 corresponds to the UV cutoff

t2 = 16π2/33 : Landau pole; t2 = ∞ : usual perturbative series

If we want to study complex zeros, we need to regularize the Borel
singularity; connection with the other model or density of states are not
well understood.
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Figure 1: ln( bk) for the dilogarithm model (solid line) and the integral
model (dashes). The dots up to order 10 are the known values. The two
models yields similar coefficients up to order 20. After that, the integral
model has the logarithm of its coefficients growing faster than linear.
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Gluon Condensate ????

The gluon condensate is not an order parameter, there is no absolute way
to define this quantity. (G. Rossi)

P (β) − Ppert.(β) ≃ C(a/r0)
4

with a(β) defined with Sommer’s scale, and Ppert appropriately truncated.

C is sensitive to resummation. C ≃ 0.6 with the bare series (YM PRD D74
096005) and 0.4 with the tadpole improved series (P. Rakow, Lattice 05).
This gives values 2-3 times larger than the official value used in SVZ.
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Figure 2: Accuracy curves for the dilogarithm model (left) and the integral
model (right) at successive orders. As The red curve is ln(0.65 (a/r0)

4).

The solid curve is ln (3.1 × 108 × (β)204/121−1/2e−(16π2/33)β)
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Zeros of the partition function

Reweighting (Falcioni et al. 82):

Z(β0 + ∆β) = Z(β0) < exp(−∆βS) >β0 . (7)

< exp [−∆β(S− < S >β0)] >β0 (8)

= exp [∆β < S >β0]Z(β0 + ∆β)/Z(β0) ,

has the same complex zeros as Z(β0 + ∆β).

Z(β) is the Laplace transform of density of states n(S):

Z(β) =

∫ ∞

0

dS n(S) exp(−βS) (9)
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Few facts about the density of state n(S)

Depends on L1, L2, . . . only.

Can be obtained from < e−(β1+iu)S >β0 (inverse Laplace transform)

S ∼ 0 probed at weak coupling

S ∼ Np (number of plaquettes ) probed at strong coupling

n(S) ∝ e−(a1S+a2S2+a3S4+a4S4) in the crossover ?

For SU(2) with Li even Z(−β) = e2βNpZ(β) and n(S) = n(2Np − S)
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Circle of confidence

Gaussian distributions (of S) have no complex zeros.

Criterion to determine a region of confidence for MC zeros (Alves and Berg
91, based on the Gaussian approximation):

σ2
S =< S2 > − < S >2 is the approximate width.

The fluctuation in exp(−∆β(S− < S >)) become of the same size as the
average for |∆β|2 < ln(Nconf.)/σ2

S

This defines a radius of confidence
√

ln(Nconf.)/σS in the complex β plane.

The radius shrinks like V −1/2.
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Quasi-Gaussian Histograms for S
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Discrepancies in unit of the expected fluctuations are coherent for 44.
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As the volume increases, the signal gets lost in the noise
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Natural units, notations

Sred. = (S− < S >)/σS ; βred. = ∆βσS . (10)

f ≡ < exp(−βred.Sred.) >

R ≡ Ref

I ≡ Imf

σ2
Re ≡ < (Re exp(−βred.Sred.) − R)2 >

σ2
Im ≡ < (Im exp(−βred.Sred.) − I)2 >

σ2
f ≡ σ2

Re + σ2
Im
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New definition of the region of confidence

The Gaussian circle of confidence in the complex β plane is defined by the
condition

σf/
√

Nconf. < |f | (11)

We propose to consider the alternative region of confidence defined by a
condition that controls the error on the level curves:

σf
√

Nconf. |f ′|
< d . (12)

In order to be useful d should be a fraction of the typical distance between
zero level curves of the real and imaginary part.
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Figure 3: Boundary of the confidence region for d = 0.3 (circles), 0.2
(crosses) and 0.1 (boxes), compared to the Gaussian circle of confidence,
all for 40,000 configurations.
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Approximate models

The nice regularities of the difference with the Gaussian approximation (for
small lattices) suggest

P (S) ∝ exp(−λ1S − λ2S
2 − λ3S

3 − λ4S
4) (13)

The unknown parameters were determined from the fist four moments using
Newton’s methods and also by χ2 minimization. Very good agreement
between the two methods was found on 44 lattices.
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Testing the new ideas with examples

Preprint arXiv 0708.0438.

Example 1: λ3 = 0.1, λ4 = 0.01. It has been chosen in such a way that we
have zeros inside and outside the Gaussian region of confidence.

Example 2: λ3 = 0.01, λ4 = 0.002 The perturbation is much smaller and
the first accurate zero is far away from the Gaussian circle of confidence.

When linear term is varied (∼ changing β), the real part of the zero
coincides with a maximum of the second moment.
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Figure 4: Zeros of the real (crosses) and imaginary (circles) part for 40000
configurations corresponding to the first example. The small dots are
the accurate values for the real (green) and imaginary (blue) parts. The
exclusion region boundary for d = 0.12 is represented by boxes (red). The
solid line is the circle of confidence of the Gaussian approximation. 24
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Figure 5: Zeros of the real (crosses) and imaginary (circles) using the
approximate λi obtained from MC moments. The small dots are the
accurate values for the real (green) and imaginary (blue) parts, for example
1.
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Moments

M2 = < (S− < S >)2 >

M3 = < (S− < S >)3 >

M4 = < (S− < S >)4 > −3 < (S− < S >)2 >2

(14)

Np ≡ 6L4 . Except at a critical value of β, mi ≡ Mi/Np have a finite limit
in the infinite volume. Note that in reduced units

M3/M
3/2
2 ∝ V −1/2

M4/M
2
2 ∝ V −1

28



29



30



31



Perturbative Methods

As the perturbations get smaller, the zeros get a larger imaginary part
and the numerical integration becomes more difficult because of the fast
oscillations of the integrand. However, it possible to use perturbative
methods. When λ3 and λ4 are both zero, the problem is Gaussian a
solvable analytically. If we calculate < exp(−βS) > at first order in λ3

and λ4 and divide by the Gaussian limit (which has no zeros), we obtain a
polynomial of order 4 in β:

< exp(−βS)(1 − λ3S
3 − λ4S

4) >G / < exp(−βS) >G

= Q(β)
= 1 + · · · − λ4β

4/(16λ4
2) ,
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Figure 6: Zeros of the real (crosses) and imaginary (circles) using MC for
SU(2) on a 44 lattice at β = 2.18. The small dots are the values for
the real (green) and imaginary (blue) parts obtained from the 4 parameter
model. The MC exclusion region boundary for d = 0.2 is represented by
boxes (red). The crossed box at (2.176, 0.175) has been obtained with the
perturbative method.
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SU(2) on 4 × 63

βc = 2.9686 (Finnberg, Karsch, Heller, NPB 392)

Where does the zero of 44 (β = 2.18(1) ± 0.18(2)) go?
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Conclusions

• We have build a ”ladder” of methods that can be applied for increasing
values of the imaginary part. Note: this is what we need to take the
inverse Laplace transform of Z(β) and obtain the density of states.

• We found a way to distinguish fake and true MC zeros that works well
with non-Gaussian examples.

• Fitting methods based on cubic and quartic perturbations work for larger
values of the imaginary part. Perturbative methods work when numerical
integration fails.

• Numerical estimates of the zeros for SU(2) and SU(3).
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Numerical Estimates of the zeros

44 lattices:

β = 2.18(1)±0.18(2) for SU(2) (differ from Falcioni 2.23+i0.155 obtained
with MC outside regions of confidence).

β = 5.54(2)±0.10(2) for SU(3) (agrees with Berg et al.) and another zero
at β = 5.54(2) ± 0.16(2) .

463 lattices:

β = 2.25(1) ± 0.13(2) for SU(2)

Estimates on larger lattices require more accurate values of the third and
fourth moments.
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Work in progress

• Check selfconsistency of the parametrization at different β.

• Estimate the density of states

• Effect of adjoint term, finite-temperature.

• Im/Re larger for SU(2), effects visible at lower order in perturbation
theory?
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