REAL TIME DYNAMICS IN THE Z(N) INTERFACE AT HIGH TEMPERATURE

Yoshimasa Hidaka (RIKEN BNL Research Center) corroboration with Robert Pisarski (BNL)

Condensed Matter Physics of QCD

Partial deconfinement

Static and real time properties

Static

- Pressure
- Entropy
- Susceptibilities

•

Real time

- Transport coefficient
 - Share viscosity
 - Bulk viscosity
 - Heat conductivity
- Plasma oscillation
- Particle production rate
 - Dilepton emission from QGP

Many observables are obtained by not only static but also real time properties based on linear response theory.

Effective Lagrangian

Hard Thermal loop resummation: Small Ao

$$L_{eff} = -m_{\rm T}^{\ 2} \int \frac{d\Omega}{4\pi} F^{\ a}_{\rho\mu} \frac{K^{\mu}K^{\nu}}{(K \cdot D)^{2}} F^{\ a}_{\nu\rho} + \cdots$$

 D_{μ} Covariant derivative $K^{\mu} = (1, \hat{k})$ $m_{T} = \frac{g^{2}T^{2}}{6}N_{c}$

Effective Lagrangian with large A0

$$L_{\rm eff} = L_{A_0^{\rm cl}}(A_0^{\rm cl}) + F^a_{\rho\mu}\Delta^{\mu\nu\rho\lambda}_{ab}(A_0^{\rm cl}, D_{\alpha})F^{\rm b}_{\nu\lambda} + \cdots$$

Degenerate vacua at high T D. Gross, et. al. ('81), N. Weiss ('81)

One-loop effective potential in the background A_0 field.

Z(N) interfaces Korthals-Altes et al ('93,'99,'01,'02,'04)

One way to probe large A_0 : Z(N) interface related to gauge transformation Polyakov line: $L = \exp[i \int_0^\beta d\tau g A_0]$ $A_0 \sim \frac{T}{g}$ Large

Z(N) interfaces

Korthals-Altes et al ('93, '99, '01, '02, '04)

Classical + one-loop potential

$$L_{eff} = \frac{1}{2} (E^{i})^{2} + V_{1-loop} (A_{0}) \sim \# \left(\frac{1}{T^{2}g^{2}} \left(\frac{dq}{dz} \right)^{2} + q^{2}(1-q)^{2} \right)$$
One dimension soliton problem

$$S \sim \frac{1}{g} \quad (\text{Instanton} \sim \frac{1}{g^{2}})$$
where $A_{0} = \frac{2\pi T}{gN_{c}}q(z)t_{N}$

$$S \sim \frac{1}{g} \quad (\text{Instanton} \sim \frac{1}{g^{2}})$$
Interface is fat
width $\sim \frac{1}{gT} \gg \frac{1}{T}$,
so can use derivative expansion

$$L = e^{2\pi i/N_{c}}$$

Z.

With quarks

No Z(3) symmetry. Still have "U(1)" interface: $\langle L \rangle : 1 \rightarrow 1$ with quarks $(N_{\rm f}=2)$ Pure Yang-Mills $V(A_0)$ $V(A_0)$ 10 0 -10 3.5 -20 -4 -6 -8 -10 -12 -14 3 A_{0}^{8} -30 2.5 -40 A_{0}^{8} 2 1.5 3.5 3 2.5 $A_0^{^{2}}$ 3.5 2 1.5 0.5 3 0.5 2.5 2 1.5 0 A_0^{3} 0.5 0

Use"U(1)" interfaces to probe large A_0

$$L = 1 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} e^{2\pi i} & 0 & 0 \\ 0 & e^{-2\pi i} & 0 \\ 0 & 0 & 1 \end{pmatrix} = 1$$

Step 1: Imaginary time

Decompose gauge field to $A_0 = A_0^{cl} + A_0^{qu}$ Background gauge field is large $A_0^{cl}/T \sim \frac{1}{g}$ Slowly changing $\partial A_0^{cl}/T^2 \sim 1$

Derivative expansion can be done.

Background field $A_{0}^{cl}(x) = \frac{1}{g} \begin{pmatrix} Q_{1}(x) & 0 & 0 & 0 \\ 0 & Q_{2}(x) & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & Q_{N}(x) \end{pmatrix} \qquad Q_{1} + Q_{2} + \dots + Q_{3} = 0$ $Q_{i} \sim T \quad \text{hard}$

 $L(x) = \exp(ig \int d\tau A_0^{\rm cl}(x)) = \exp(i \int d\tau Q(x))$

Step 1 : Imaginary time

We choose the basis of Lie algebra as eigenstates of the background field. Quarks and gluons carry color "charge". Double line notation

$$iD_{0}\psi^{i} = (k_{0} + Q_{i})\psi^{i} \quad k_{0} = 2\pi(n + \frac{1}{2})T$$

$$iD_{0}A_{\mu}^{ij} = (k_{0} + Q_{i} - Q_{j})A_{\mu}^{ij} \quad k_{0} = 2\pi nT$$
 fun

adjoint

$$Q_i$$

$$Q_i - Q_j$$

SU(2)
$$t^{+} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, t^{-} = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, t^{3} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

 Q_i Corresponds to imaginary chemical potential

Propagator
(leading order)
$$\frac{1}{(\omega_n + Q_j)^2 + k^2 + m^2}$$

Bose distribution $n_Q = \frac{1}{\exp(\omega - iQ)/T - 1}$

From imaginary time to real time

Without background

 $i\omega_n \rightarrow p_0 \quad \omega_n = 2\pi nT$ Matsubara frequency Furuuchi '05 Assume $A_0(t)$ does not depend on \mathcal{X} $-t_{\rm I} \uparrow A_0 = 0$ on real axis $+t_{\rm F}$ Complex time Consider complex time path Free case $A_0 = \text{constant}$ $(-(\partial_0 - iQ_i)_C^2 + \partial_i^2 - m^2)\phi_i(x) = 0$ solution $\phi(x) = \exp(i \int_{C}^{t} dt' (Q_{i}(t') - k_{0}) + \mathbf{k} \cdot \mathbf{x}) \qquad t_{\mathrm{I}} = t_{\mathrm{F}} \to \infty$ $L = \exp(i \int_{C}^{-i\beta} dt A_0(t))$ We require that L is independent from a choice of complex time path. A reasonable gauge choice is $-\begin{cases} A_0 = 0 & \text{on real axis.} \\ A_0 = \text{constant on imaginary axis.} \end{cases}$ $i\omega_n + iQ_i \rightarrow p_0$

Step 2 & 3: Hard Thermal Loop approximation

🗘 🗘 🕂 Tad pole, ghost diagrams

Hard Thermal Loop approximation

External momentum $P \sim gT$ soft Loop momentum $K, Q \sim T$ hard Pick up T^2 order $\Pi_{\mu\nu} \sim g^2 T^2$

Diagonal gluon (neutral charge) OK Off diagonal gluon has another part $\sim i \frac{g^2 T^3}{P} \sim g T^2 \gg g^2 T^2$ Need infrared resummations

Two point function

$$\Pi_{\mu\nu}^{ij,kl}(P) = -2m_T^{2ij,kl}(Q) \Biggl(-\delta^{\mu 0} \delta^{\nu 0} + \int \frac{d\Omega}{4\pi} \frac{P^0 K^{\mu} K^{\nu}}{K \cdot P} \Biggr) + if^{ij,kl}_{mn} J^{mn0}(Q) \int \frac{d\Omega}{4\pi} \frac{K^{\mu} K^{\nu}}{K \cdot P} L_{eff2} = \frac{1}{2} A_{\mu}^{ij} \Pi_{\mu\nu}^{ij,kl} A_{\nu}^{kl}$$

$$\text{thermal mass} \quad m_T^{2}(Q) = \frac{g^2 T^2}{6} f^{ij,kl,mn} f^{i'j'}_{kl,mn} (1 - 6q^{kl}(1 - q^{kl})) \qquad q^{ij} = \frac{Q^{ij}}{2\pi T} \qquad Q^{ij} = g \Bigl((A_0^{el})^i - (A_0^{el})^j \Bigr)$$

$$J^{ij0}(Q) = \frac{\pi T^3}{3} g f^{ij,kl}_{kl} q^{kl} (1 - q^{kl}) (1 - 2q^{kl})$$

$$\text{Debye mass} \quad m_D^{2}(Q) = -\Pi_{00}(p_0 = 0, p \to 0) = 2m_T^{2} \quad \text{For diagonal gluon}$$

Thermal mass square become negative in some region. $m_T^2 = \frac{g^2 T^2}{6} f^{ij,kl,mn} f^{i'j'}_{kl,mn} (1 - 6q^{kl}(1 - q^{kl})) < 0$

Tunneling effect

Is this a real wall?

Is the interface physical observable?

The interface lives on the imaginary time.

The interface is not real domain wall in Minkowski space-time.

V.M. Belyaev et. al. ('92) , A Smilga ('93)

Anomalous charge density

 $\left\langle J^{ij0}
ight
angle =$ pure imaginary because the background has a Euclidean electric field. Gauss' law $D\cdot E^{ij}=iJ^{ij0}$

Sum over corrective coordinates and multi solitons.

$$\left| \int J^{ij0} \right\rangle = 0$$

 $z = z_0$

Summary

We have calculated two-point function to construct an effective Lagrangian in the real time with a large Ao.

Thermal math is modified. $m_T^2(Q) = \frac{g^2 T^2}{6} f^{ij,kl,mn} f^{i'j'}_{kl,mn} (1 - 6q^{kl}(1 - q^{kl}))$ another term proportional to charge density

 $J^{ij0}(Q) = \frac{\pi T^3}{3} g f^{ij,kl}{}_{kl} q^{kl} (1 - q^{kl}) (1 - 2q^{kl})$

- We have explored interfaces background, large A₀ but semi-classical calculation can be done.
- For HTL resummation, we need to calculate three and four point functions.