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1 – OUTLINE

• QCD at finite density and imaginary chemical potentials

• Analytic continuation and the phase diagram in the T − µ2 plane.

• Physical results

• Analytic continuation in QCD-like models

• Imaginary µ and the phase of the determinant



2 – QCD at finite density and the sign problem
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Our knowledge of the QCD phase diagram and of the dynamics of strongly interacting
matter at finite temperature and baryonic density is still partial.
Lattice QCD simulations, which are the best non-perturbative computational tool, are
hindered at finite baryonic density by the well known “sign problem”.



The correct way to discretize the QCD partition function at finite chemical potential

Z(µ) = Tr
(
e−

HQCD−µN
T

)

is to consider µ as being part of the covariant derivative, like the temporal component
of a U(1) imaginary background field
P. Hasenfratz F. Karsch,1983; J.B. Kogut et al., 1983; R. V. Gavai 1985.

This is implemented by modifying the temporal links appearing in the fermion matrix:

Ut → eaµUt (Ut)
† → e−aµ(Ut)

†

The hermiticity properties of the fermion matrix are lost, the residual symmetry being

(detM(µ))∗ = detM(−µ)

which means that detM is in general complex and thermal expectations values

〈O〉 =

∫
DU detM [U ] e−Sg [U ] O[U ]∫
DU detM [U ] e−Sg [U ]

cannot be evaluated by standard Monte Carlo simulations.



Apart from studying sign-problem-free similar theories (2-color QCD, finite isospin
density QCD, ...), the problem can be partially circumvented by a variety of methods,
mostly in a limited region of high T , small µ

Reweighting 〈O〉 =
〈
O det(M(µ))

det(M(0))

〉
µ=0

/
〈

det(M(µ))
det(M(0))

〉
µ=0

I.M. Barbour et al, 1998

Multiparameter reweighting (reweighting also in β) Z. Fodor and S.D. Katz, 2002→

Taylor expansion Physical quantities expanded as Taylor series around µ = 0

· Coefficients obtained as expectation values of local operators at µ = 0
Bielefeld-Swansea Collaboration 2002→ Gavai and Gupta 2003→

Density of states partition function rewritten in terms of the density of states for some quantity
x (plaquette, quark number, . . . ), sign problem might be better under control

Bhanot, Bitar, Salvador (1987), Karliner, Sharpe, Chang (1988), Azcoiti, Di Carlo, Grillo (1990),
Luo (2001), Ambjorn et al (2002), Fodor, Katz, Schmidt (2006)

Heavy quark expansions sign problem still present but easier simulations
T. C. Blum, J. E. Hetrick, D. Toussaint, 1996, J. Engels, O. Kaczmarek, F. Karsch, E. Laermann, 1999

R. De Pietri, A. Feo, E. Seiler, I. O. Stamatescu, 2006

Imaginary chemical potential ...



Imaginary chemical potential
Consider the partition function Z(iµI) defined by an imaginary chemical potential

Ut → eiaµIUt U−t → e−iaµIU−t = (eiaµIUt)
†

this is like adding a constant and real U(1) background field. detM [U ] > 0 =⇒
Monte Carlo simulations are feasible. What can we learn from imaginary µ′s?
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Reconstruction of the canonical partition function
Z(iµI) can be used to reconstruct the canonical partition function Z(n) at fixed
quark number n (Roberge, Weiss, 1986) (θ = µI/T )

Z(n) = Tr
(

(e−
HQCD
T δ(N − n)

)
=

1

2π
Tr

(
e−

HQCD
T

∫ 2π

0

dθeiθ(N−n)

)
=

1

2π

∫ 2π

0

dθe−iθnZ(iθT )

A. Hasenfratz, D. Toussaint, 1990; Alford et al., 1992 (2-d Hubbard model); de Forcrand, Kratochvila,
2004, 2006; A. Alexandru et al., 2005 Thermodynamical limit not easily reachable.
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Analytic continuation to real µ
Away from critical points Z(T, µ) is a regular function of µ2. Results at µI (µ2 < 0)
can be used to fit the expected dependence continued from real µ′s (µ2 > 0).
M.P. Lombardo, 2000, A. Hart et al, 2000, de Forcrand, Philipsen, 2002, D’E., Lombardo, 2003



The method of analytic continuation from an imaginary chemical po-
tential has some advantages over other methods:

• it does not suffer much from increasing the spatial volume → easier thermody-
namical limit

• it gathers information from a wider region than just at µ = 0

It must be used with a grain of salt

• the phase structure of the theory in the whole T − µ2 is needed to understand to
what extent analytic continuation can be applied

• the choice of the best interpolating functions to be continued may be non-trivial
and physical intuition may serve as a guidance



Phase structure in the T − µI plane
A. Roberge and N. Weiss, 1986

The fermionic determinant in the QCD partition function can be interpreted in terms
of an effective action

Z =

∫
DU detM [U ] e−Sg [U ] =

∫
DU eTr lnM [U ] e−Sg [U ]

a loop expansion clearly shows that this introduces couplings to the Polyakov loop
L, precisely to (TrL+ TrL†), which explicitly breaks the Z3 symmetry, acting like a
magnetic field pointing along the real Z3 root:

• at low temperatures 〈L〉 6= 0 and real, even if small

• at high temperatures the symmetry breaking term removes the Z3 degeneracy
selecting one particular Z3 vacuum (the real one)



The introduction of an imaginary chemical potential modifies the loop expansion by
multiplying all loops winding around the temporal direction by exp(inwµI/T ), where
nw is the winding number. That is equivalent to a rotation of the effective magnetic
field by an angle−µI/T .

• At low temperatures 〈L〉 rotates following the external field. Z(iµI) is a smooth
periodic function of µI/T with period 2π/Nc

• At high temperatures 〈L〉 is constrained to one of the Z3 vacua, but the orienta-
tion of the external field selects the true vacuum: first order phase transitions are
present for µI/T = 2(k + 1/2)π/Nc where k is integer. =⇒ RW transitions

A typical phase diagram in the T −µI
plane is then the following. As a mat-
ter of fact, endpoints of RW transition
lines cannot be resolved from the con-
tinuation of the chiral (pseudo)critical
line. −2.0 0.0 2.0 4.0 6.0
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The following issues can be therefore analyized within the analytic continuation approach

µ2

SQGP

HRG

Perturbative region

critical line

RW T

• continuation of the critical line for small chemical potentials

• physical properties of hadronic matter below the transition (HRG model)

• physical properties of deconfined matter right above the transition (strongly inter-
acting QGP) and at very high T (connection with perturbation theory).



The imaginary chemical potential method allows generalizations
V. Azcoiti, G. Di Carlo, A. Galante, V. Laliena, JHEP 1204:010 and Nucl. Phys. B 723, 77 (2005).

SF = ma
∑

n

ψ̄nψn +
1

2

∑

n

3∑

i=1

ψ̄nηi(n)
(
Un,iψn+i − U†n−i,iψn−i

)
+ Sτ (x, y) ,

Sτ (x, y) = x
1

2

∑

n

ψ̄nη0(n)
(
Un,0ψn+0 − U†n−0,0ψn−0

)

+ y
1

2

∑

n

ψ̄nη0(n)
(
Un,0ψn+0 + U†n−0,0ψn−0

)
,

x± y = e±aµ =⇒ usual real chemical potentials
y = iyI and x± iyI = e±iaµI =⇒ imaginary chemical potential

The sign problem disappears for imaginary values of y = iyI . For x2 + y2
I 6= 1 this

is like using an imaginary chemical potential plus a variable prefactor
√
x2 + y2

I in
front of the temporal covariant derivative in the fermion matrix.
The idea is to compute quantities as a function of iyI and to continue them to the
physical point given by x2 − y2 = 1 (x+ y = eaµ, x− y = e−aµ)
An extension to lower temperatures should be possible.



3 – Continuation of the critical line

Several results have been obtained allowing a detailed comparison among several
methods:

The critical line obtained for Nf = 2 by de
Forcrand and Philipsen by analytic continua-
tion is compared to determination by Taylor
expansion (Bielefeld-Swansea) and reweight-
ing (Fodor and Katz). from E. Laermann and
O. Philipsen, hep-ph/0303042.

0 200 400 600 800
µB/MeV

145

150

155

160

165

170

175

180

185

T/
M

eV

Nf=2, [115]
Nf=2+1, [116]
Nf=2, [119]
Nf=4, [121]

The critical line obtained forNf = 4 obtained
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is compared to that obtained by Azcoiti et al
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Azcoiti et al, Nucl. Phys. B 723, 77 (2005).
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Azcoiti et al., 83

Fodor, Katz, 63

Our reweighting, 63

This work, 63

The critical line for Nf = 4 compared
to that obtained with the canonical
approach. from S. Kratochvila and P. de
Forcrand, PoS LAT2005, 167 (2006).

The critical line obtained for Nf = 4 for
Wilson and staggered fermions. from
H. S. Chen and X. Q. Luo, Phys. Rev. D
72, 034504 (2005).



Current issues about the critical line

1) Within the analytic continuation approach, de Forcrand and Philipsen have studied
the behaviour as a function of the chemical potential of the critical quark massmc(µ)

corresponding to the critical end point of the first order line for Nf = 3.

Last results (talk by de Forcrand at Lattice 2007) clearly show that dmc/dµ
2 < 0 for small

µ =⇒ the transition weakens as µ is increased from zero =⇒ if crossover at
µ = 0 no critical endpoint is expected for relatively small chemical potentials.

Result supported by

• studies at finite isospin density (Kogut and Sinclair)

• model study of the 3d 3-state Potts model (de Forcrand, Kim, Kratochvila, Takaishi)

2) A more careful study of the analytic continuation of the critical line (continuum
limit and physical quark masses) could permit an interesting comparison with freeze-
out experimental curves (talk by O. Philipsen at Lattice 2007).



4 – Analytic continuation below Tc: testing the HRG model

In the Hadron Resonance Gas model the free energy density is described in a very
simple way in terms of a free gas of resonances

F (T, µ)

V T 4
=
F (T, 0)

V T 4
+ f(T )

(
1− cosh(

3µ

T
)

)
,

hence the baryon number density is

nB(µ) ≡ − 1

µ

∂

∂µ
F (T, µ) ∝ sinh(

3µ

T
)

.

that dependence can be naturally continued to imaginary chemical potential leading
to the following expression for the free energy density

∆F (T, µI)

V T 4
≡ F (T, µI)

V T 4
− F (T, 0)

V T 4
= f(T )

(
1− cos(

3µ

T
)

)
,

and for the imaginary part of the quark number density

Im(nB(µI)) ∝ sin(
3µI
T

)



These predicitions are nicely tested at µ = iµI : single Fourier terms well fit the data
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For T < Tc analytic continuation is limited
at µ2 > 0 by the chiral line. We can how-
ever obtain interesting information regard-
ing the transition. For instance the baryon
number density continued to real values
of µ can be used to estimate the critical
density at the phase transition. (M.D’E. and

M.P. Lombardo, 2004 for Nf = 4)

Similar result are obtained with other methods (e.g. the Taylor expansion method,
C. R. Allton et al, 2005).

Future high precision studies in the region T < Tc could help finding violations to
the simple one-Fourier-term behaviour (these are clearly visible in SU(2), see later ...)

That could clarify the extent of validity of the HRG model.



5 – Exploring the Deconfined Phase

At high T the region of µ2 < 0 available for analytic continuation is limited either by
the RW transition or by the continued physical (pseudo)critical line.

There is no apriori limit for analytic continuation at µ2 > 0, however the cut at µ2 <

0 implies at least a practical problem for continuation to large chemical potentials,
because of the limited information available.
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A number of quantities can be studied and confronted with model predictions:

• baryon number density

• pressure density

∆P/T 4 = (P (T, µ,mq)− P (T, µ = 0,mq))/T
4

obtained for instance by integrating the baryon number

n(T, µ,mq) =
∂P (T, µ,mq)

∂µ
; (P (T, µ,mq)− P (T, µ = 0,mq))/T

4 = N4
t

∫
n(µ)dµ
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At high temperatures the pressure ap-
proaches asymptotically free lattice gas
predicition. (M.D’E. and M.P. Lombardo,
2004 forNf = 4). Similar result have been
obtained by de Forcrand and Kratochvila.
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The baryon density is well reproduced by the free lattice gas results if an effective
number of flavors, depending on temperature, is taken.

A more refined analysis can be tried by matching to the predictions of perturbation
theory (M. D’E., F. Di Renzo, M.P. Lombardo, A. Vuorinen, in progress)
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at T ' 1.1Tc: we are indeed approaching the
region where the QGP is thought to be strongly
interacting.

Can we investigate the properties of the sQGP?
We have started a study aimed at that (M. D’E., F. Di Renzo, M.P. Lombardo, 2007) .

• Can we get any information about the bound states (colored and colorless) popu-
lating the sQGP?

• Do the critical properties at µ2 < 0 (chiral critical line, endpoint of the RW transi-
tion) have any influence at µ2 > 0?

We have studied Nf = 4 QCD at T ' 1.1Tc, corresponding almost exactly to the
endpoint of the RW transition. Studies based on the second and fourth order cumu-
lant of number densities (Karsch, Ejiri, Redlich, 2005) show that states with the quantum
number of quarks are dominating for T ≥ 1.5Tc.



Bound state analysis
Following the simple prescription of the HRG model, we can try describing the sQGP
as a sum of non-interacting bound states:
∆P

T 4
= Fq(T )(1−cos(µ/T ))+Fqq(T )(1−cos(2µ/T ))+Fqqq(T )(1−cos(3µ/T ))+Fqqqq(T )(1−cos(4µ/T ))

giving in turn

n(µI , T ) = Fq(T ) sin(µI/T )+2Fqq(T ) sin(2µI/T )+3Fqqq(T ) sin(3µI/T )+4Fqqq(T ) sin(3µI/T )+. . .
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Data are fitted better and better as more
terms are introduced, however fit param-
eters are unstable and one cannot get a
χ2/d.o.f. better that∼ 3.

• Hypothesis of non-interacting bound states could be too strong

• Bound state masses could depend onµ as well, thus modifying the simple trigono-
metric behaviour



A different hypothesis:

Can we interpret results in terms of a critical behaviour induced by the nearby end-
point of the Roberge-Weiss transition line happening at µI/T = π/3?
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>0.15, constrained critical point A critical behaviour for the fermion num-
ber density (imaginary part) like

n(µI) = AµI(µ
c
I

2−µ2
I)
α → n(µ) = Aµ(µcI

2+µ2)α

with α ∼ 0.3, µcI
2 ∼ 0.08 and χ̃2 ∼ 1.8

well reproduces the numerical data.

Can the physical properties of the sQGP be described in terms of this critical be-
haviour at µ2 < 0? Further studies are needed to test this “strong” hypothesis.



.

ANALYTIC CONTINUATION IN QCD-LIKE THEORIES



6 – Analytic continuation under scrutiny

In QCD-like theories where simulations are feasible both at imaginary and real chem-
ical potentials, analytic continuation can be carefully tested. A few examples:

• Two color QCD SU(2) gauge group is real =⇒ the determinant is real
P. Giudice and A. Papa, 2004; P. Cea, L. Cosmai, M. D’E. and A. Papa, 2006

• 3d 3-state Potts models sign problem is still present but well under control S. Kim, P. de For-
crand, S. Kratochvila, and T. Takaishi, 2005

• QCD at finite isospin chemical potential
yet not done

A few specific points to address:

• To what extent can we trust analytic continuation?

• What is the optimal way to extract information? (best interpolation = polynomial,
ratio of polynomials, Fourier . . . ?)

Let us look at some results obtained in two-color QCD ...
Nf = 8, Nt = 4 staggered fermions; P. Cea, L. Cosmai, M. D’E. and A. Papa, JHEP 0702 (2007) 066
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• Extrapolations from µ2 < 0 are consistent with real data in a wide range of µ2 > 0

• A considerable improvement is obtained if ratio of polynomials (Padè approxi-
mants) are used to interpolate data at µ2 < 0 instead of simple Taylor expansions.
That fits well with recent proposals (M.P. Lombardo, 2005)

• Deviations at large real chemical potentials can be ascribed to the onset of satu-
ration, an unphysical lattice artifact induced by the Pauli exclusion principle.
fermions fill all available levels =⇒ fermion dynamics gets quenched
analytic continuation better than direct simulations at real µ ??



Low Temperature Region T < Tc
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• Trigonometric functions are the natural interpolating functions for data at µ2 < 0

in this case. They are continued to hyperbolic functions for real chemical poten-
tials.

• The high precision of our data permits to fit deviations from the hadron resonance
gas model, e.g. for the quark number density

A sin(2µI/T ) +B sin(4µI/T ) ;A = −0.021582(37) , B = −0.000611(35) , B/A < 1/30

• Deviations at real µ can be ascribed in this case to the presence of the chiral
transition line.
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It is even possible to try global fits to the whole set of data at real and imag-
inary chemical potentials, thus directly testing the hypothesis that they can be
described by a single analytic function Fits are successfull till the chiral transition
at real µ is reached, as signalled also by the peak of the chiral susceptibility.



Continuation of the critical line
The analytic continuation of the critical line Tc(µ) is more subtle and careful tests are
even more important in this case.
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S. Kim, P. de Forcrand, S. Kratochvila, and
T. Takaishi (2005) have studied the critical
endpoint of the first order transition in the
3d 3state Potts model as a function of µ2.
Analyticity is well verified but a fourth or-
der polynomial in µ2 is needed.

We are currently extending our investigation of analytic continuation in two-color
QCD to the critical line issue (poster by A. Papa at Lattice07)
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we determine the critical line from various susceptibilities: chiral, Polyakov, plaquette

• different susceptibilities give perfectly compatible results

• The critical line at µ2 < 0 is well described by a simpler linear behaviour in µ2 up
to the endpoint of the RW line: no trace of further terms is still present.

• Location of the critical line at real µ show a “tension” with respect to analytic
continuation in the case of the chiral susceptibility, where the error is smaller

• The issue must be fully clarified:

– Larger statistics to see if the tension becomes disagreement or not
– Careful study of the phase structure at µ2 > 0



.

WHERE HAS THE PHASE GONE?
does the theory at µ2 < 0 remember of the sign problem?



An observable which is strictly related to the phase of the fermionic determinant is
the Polyakov loop:

• it is known that L = 〈TrP 〉 and L̄ = 〈TrP †〉 are both real at real chemical poten-
tial, but L 6= L̄, and in particular L(µ) = L̄(−µ) (see e.g. F. Karsch and H. W. Wyld,

1985).

• configuration by configuration TrP and TrP † are always the complex conjugate of
each other, the fact that Re〈TrP 〉µ 6= Re〈TrP †〉µ is strictly related to the complex
measure which is meant 〈·〉µ

what about imaginary chemical potentials? M.D’E., F. Di Renzo, M.P. Lombardo, 2007

• consider the continuation of Lo/e(µ) ≡ L(µ)± L̄(µ) = L(µ)± L(−µ).

– Lo/e(µ) is odd/even in µ =⇒ Lo/e(iµI) is purely imaginary/real

– L(iµI) = (Lo(iµI) + Le(iµI))/2 =⇒ Lo/2 is the imaginary part of the
Polyakov loop at imaginary chemical potentials.

• hence it is the imaginary part of the Polyakov loop which keeps memory of L̄ 6= L,
hence of the complex nature of the measure at real µ.
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Imaginary part of the Polyakov loop confronted with the imaginary part of the quark
number density, showing that Im(L) is directly related to the finite baryonic density.
The correspondence should become exact in the infinite mass limit. (M.D’E., F. Di Renzo,

M.P. Lombardo, 2007).



ANALYTIC CONTINUATION OF THE PHASE OF THE FERMIONIC DETERMINANT

The QCD partition function with two flavours of equal chemical potential µ is:

Z(µ, µ) ≡
∫
DUe−SG[U ](detM [U, µ])2 =

∫
DUe−SG[U ]| detM [U, µ]|2ei2θ ,

detM [U, µ] = | detM [U, µ]|eiθ

If the two flavours have opposite µ =⇒ no sign problem (detM(−µ) = detM(µ)∗)

Z(µ,−µ) =

∫
DUe−SG[U ]| detM [U, µ]|2

This corresponds to finite isospin density or phase quenched QCD

The average phase factor 〈ei2θ〉(µ,−µ) gives an indication of the severeness of the
sign problem and of the difference between finite isospin and baryon density.

〈ei2θ〉µ ≡
〈

detM(µ)

detM(−µ)

〉

(µ,−µ)

=
Z(µ, µ)

Z(µ,−µ)
.



Recently it has been proposed to continue 〈ei2θ〉µ to imaginary µ′s
(K. Splittorff and J. J. M. Verbaarschot, 2007 ; K. Splittorff and B. Svetitsky, 2007)

〈ei2θ〉iµ ≡
〈

detM(iµ)

detM(−iµ)

〉

(iµ,−iµ)

=
Z(iµ, iµ)

Z(iµ,−iµ)
=

∫
DUe−SG[U ] detM(iµ) detM(iµ)∫
DUe−SG[U ] detM(iµ) detM(−iµ)

detM [U,±iµ] is real =⇒ both partition functions are suitable for simulations.

That has been studied in the ε regime by evaluating detM(±iµ) on the basis of the
lowest lying eigenvalues of the Dirac matrix and confronted with analytical predic-
tions. (K. Splittorff and B. Svetitsky, 2007)

At imaginary chemical potentials one can define a generalized partition function

Z(iµ, iν) ≡
∫
DUe−SG[U ] detM [U, iµ] detM [U, iν] .

which is suitable for numerical simulations for every (iµ, iν). That allows numerical
techniques for an exact evaluation of average phase factor also outside the ε regime.
(S. Conradi and M. D’E., 2007)



Let us consider

Rµ(ν) =
Z(iµ, iν)

Z(iµ,−iµ)

Rµ(µ) = 〈ei2θ〉iµ while Rµ(−µ) = 1. The idea is to compute the derivative of
lnRµ(ν) and then integrate it (similar to the integral method for computing of ∆P/T 4).

ρ(ν) ≡ d

dν
lnRµ(ν) =

d

dν
lnZ(iµ, iν) =

〈
i Tr

(
M−1(iν)

d

d(iν)
M(iν)

)〉

(iµ,iν)

.

The trace gives the quark number (imaginary) coupled to the chemical potential iν.

The average phase factor is then given by

〈ei2θ〉iµ = exp

(∫ µ

−µ
ρ(ν)dν

)
(1)

hence obtained without any determinant computation. The derivative ρ(ν) is com-
puted for a discrete set of ν and then integrated numerically.

We have tested the method for 8 staggered flavors of mass am = 0.1. A strong first
order transition is present at µ = 0: we have explored both phases.
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Analyticity of the phase factor around
µ2 = 0 is well verified on the smallest
lattices. In our largest range of values at
β = 4.8 we have:

〈ei2θ〉 = 1 + Aµ2 +Bµ4 (2)

withA = −4.48(8),B = 15.7±2.5 and
χ2/d.o.f. ' 1.3.



The study of the large volume scaling of 〈ei2θ〉 is affordable at imaginary µ
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We have studied two different values of
iµ. In both cases the scaling with Ls is
well described by:

〈ei2θ〉 = 1 + CLγs (3)

with γ ∼ 2.5.

=⇒ The region at real chemical potentials where the sign problem is not important
becomes irrelevant in the thermodynamical limit, phase factor suppressed exponen-
tially with the volume in that limit (compare also with results presented by Ph. de
Forcrand in his talk)



SUMMARY and OUTLOOK

? The method of analytic continuation from an imaginary chemical potential is provid-
ing us with interesting (even if not “extreme”) results about the QCD phase diagram:

• slope and nature of the critical line for relatively small chemical potentials

• properties of the hadron gas below Tc

• properties of deconfined matter in the strongly interacting phase and approaching
the perturbative regime

? Exact analytic results are also being obtained in special regimes or models:

• yesterday talk by P.H. Damgaard, tomorrow talk by K. Splittorff about the ε-regime

• F. Karbstein and M. Thies have recently shown how to obtain the whole phase
diagram of the 1 + 1 large N Gross-Neveu model by analytic continuation of the
effective potential of the order parameter. Extensions to QCD?



? The method is applicable to other theories with a sign problem (consider for in-
stance an imaginary θ-term, see e.g. poster by B.Alles and A.Papa at Lattice 2007).

? Systematic studies of the validity of the method can be performed in theories where
the sign problem is absent or treatable

? Much work yet to be done: further efforts and more refined studies
will surely lead to even more interesting results in the near future.


