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Overview

• Consider finite-volume QCD with asymptotically vanishing imaginary
isospin chemical potential: µ ∼ 1/

√
V .

• For very light quarks m ∼ 1/V this can actually be a pretty extreme
isospin chemical potential: mπ ∼ 1/

√
V – same as µ.

• Both with and without chemical potential the connection between chiral
Random Matrix Theory and the chiral Lagrangian is well established.

• Random Matrix Theory gives the finite-volume scaling limit of QCD deep
in the ε-regime.

• Scaling depends to leading order on one fitting parameter: the chiral
condensate Σ.
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• To next orders the other low-energy constants of QCD begin to appear.
Then Random Matrix Theory cannot be used.

• Goal: To find finite-volume scaling for Fπ already at leading order.

• We need to introduce an appropriate source. This is where we choose

imaginary isospin chemical potential.

• Because isospin chemical potential corresponds to having two different
Dirac operators, we need a Random Two-Matrix Theory.

• A theory with (imaginary) isospin chemical has no sign problem: it can
be simulated by Monte Carlo methods.

• Better: We can use lattice configurations obtained at zero isospin
chemical potential (“partial quenching”).
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The Aim

To extract Fπ from the distribution of just one single Dirac operator
eigenvalue with chemical potential.
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The ε-regime

Spontaneous breaking of chiral symmetry

Σ = lim
m→0

lim
V →∞

〈ψ̄ψ〉

Finite-volume scaling in the ε-regime:

V → ∞

mπL� 1

Low-energy QCD depends only on the scaling variable

m̂ ≡ mΣV
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Rescale Dirac operator eigenvalues λ

ξ ≡ λΣV

Universal distributions and correlation functions.

0 10 20
ζ

0

0.1

0.2

0.3

0.4
P

k(
ζ)

,  
k=

1.
..6

µ=6.41

5



Random Matrix Theory I

Chiral Random Matrix Theory [Verbaarschot, 1994]:

Zν =

∫

dΦ

Nf
∏

f=1

det[D +mf ]e−NV (ΦΦ†)

with

D =

(

0 iΦ
iΦ† 0

)

Finite-size scaling in the matrices: N → ∞, fix

ξ = 2πρ(0)λN

6



Spectral correlation functions of ξ’s coincide exactly with those of the Dirac

operator in the ε-regime.

2πρ(0)λRMTN ∼ ΣλDiracV

The approach based on the effective low-energy theory is more tedious, but
systematic.
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The Chiral Lagrangian

L =
Fπ

4
Tr

[

∂µU(x)∂µU
†(x)

]

− Σ

2
Tr

[

MU †(x) + M†U(x)
]

+ . . .

Leading term in the ε-expansion

L = − Σ

2
Tr

[

MU †(x) + M†U(x)
]

Partition function in sector of fixed topological charge ν

Zν =

∫

U(Nf)

dU (detU)νe
1
2ΣV Tr(M†U+MU†)
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Include Isospin Chemical Potential

Dirac operators

D+ψn ≡ [ /D(A) + iµγ0]ψn = iλ(+)
n ψn

D−ψn ≡ [ /D(A) − iµγ0]ψn = iλ(−)
n ψn

Transcription to the effective theory:

∂0U(x) → ∇0U(x) = ∂0U(x) − iµ[σ3, U(x)],

Leading term in the ε-regime (B = σ3)

Zν =

∫

dU det(U)νe
1
4V F 2

πµ2Tr[U,B][U†,B]+1
2ΣV Tr(M†U+MU†)
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New finite-volume scaling variable

µ̂2 ≡ V F 2
πµ

2

Partition functions be computed analytically. Example, Nf = 2

Zν = e−2µ̂2
∫ 1

0

dt te2µ̂2t2Iν(tm̂+)Iν(tm̂−),

Consider the 2-pt spectral correlation function

ρ(λ+, λ−) ≡
〈

∑

n

δ
(

λ+ − λ
(n)
+

)

∑

m

δ
(

λ− − λ
(m)
−

)

〉

−
〈

∑

n

δ
(

λ+ − λ
(n)
+

)

〉〈

∑

m

δ
(

λ− − λ
(m)
−

)

〉
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Example: the quenched formula

ρs(ξ+, ξ−)

= ξ+ξ−

[∫ 1

0

dt te2µ̂2t2Jν(tξ+)Jν(tξ−)

]

×
[

1

4µ̂2
exp

(

−(ξ2+ + ξ2−)

8µ̂2

)

Iν

(

ξ+ξ−
4µ̂2

)

−
∫ 1

0

dt te−2µ̂2t2Jν(tξ+)Jν(tξ−)

]

[PHD, U.M. Heller, K. Splittorff and B. Svetitsky, 2005]
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Random Matrix Theory

The “simple” form of the final results for Nf = 0 and Nf = 2 suggests that
Random Matrix Theory is at play again.

Two different Dirac operators suggest that we need a chiral Random

Two-Matrix Theory.

Consider (N ∼ size of matrix)

Zν =

∫

dΦ1dΦ2

N1
∏

f1=1

det[D1 +mf1]

N2
∏

f2=1

det[D2 +mf2] e
−NTrV (Φ1,Φ2)

with

D1,2 =

(

0 iΦ1,2

iΦ†
1,2 0

)

(1)
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The two random matrices are coupled

V (Φ1,Φ2) = c1Φ
†
1Φ1 + c2Φ

†
2Φ2 − d

(

Φ†
1Φ2 + Φ†

2Φ1

)

with

c1 = (1 + µ2
2)/δ

2

c2 = (1 + µ2
1)/δ

2

d = (1 + µ1µ2)/δ
2

δ = µ2 − µ1

In the scaling limit the partition function of this chiral Random Two-

Matrix Theory coincides with that of the leading term of the chiral

Lagrangian in the ε-regime.
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Eigenvalue Representation

Decompose

Φ1 = U1XV
†
1

Φ2 = U2Y V
†
2

and perform the unitary integrations (chiral analogs of Itzykson-Zuber
Integral)

∫

dUdV exp [dNTr(V XUY ) + h.c. ] =
det[Iν(2dNxiyj)]

∏

(xiyi)ν∆N({x2})∆N({y2})

∆N(z) is the Vandermonde determinant.
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Eigenvalue representation

Z(Nf)
ν =

∫ ∞

0

N
∏

i



dxidyi(xiyi)
ν+1

N1
∏

f1=1

(x2
i +m2

f1)

N2
∏

f2=1

(y2
i +m2

f2)





× ∆N({x2})∆N({y2}) det [Iν(2dNxiyj)] e
−N

P

i c1x2
i +c2y2

i (2)

Now ALL eigenvalue correlation functions can be computed!
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Two and More Light Flavors

ρ
(1+1)
(n,k) ({x̂}n, {ŷ}k) =

n
∏

i=1

x̂i

k
∏

j=1

ŷj

(

I+(im̂u, im̂d)
)−n−k

× det
1≤i1,i2≤n

1≤j1,j2≤k













I+(im̂u, im̂d)I0(x̂i1, x̂i2) −I+(im̂u, im̂d)Ĩ−(ŷj1, x̂i2)
−I0(x̂i1, im̂u)I+(x̂i2, im̂d) −I0(ŷj1, im̂d)I0(x̂i2, im̂u)

I+(im̂u, im̂d)I+(ŷj1, x̂i2) I+(im̂u, im̂d)I0(ŷj1, ŷj2)
−I+(ŷj1, im̂u)I+(x̂i2, im̂d) −I+(ŷj1, im̂u)I0(ŷj2, im̂d)













with known integrals I’s.

Now even the spectral density itself is µ̂-dependent – we have the closed
analytical expression.
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Moreover: ρ(1,1)(x̂, ŷ) agrees precisely with the result from the chiral
Lagrangian!
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Partial Quenching

Use ordinary configurations without chemical potentials to extract Fπ with
the same method. The chemical potential enters only in the valence sector.

Forbiddingly difficult to perform the calculation from the chiral Lagrangian
without new tricks or new insight.

Can be computed straightforwardly from the Random Two-Matrix Theory.
We have the general (k, n)-correlation function analytically.

It is “simple”, but I will not show it.
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One Eigenvalue Splits into Two

Suppose we have only one ordinary Dirac eigenvalue available.

Compare the distribution of this single eigenvalue to that of a valence quark
eigenvalue with chemical potential.

Work in Progress:

Let us derive the distribution of the lowest Dirac operator eigenvalue for a
valence quark with chemical potential.
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We already have expansions.

Let there be “ordinary”, physical, Dirac eigenvalues x, and valence Dirac
eigenvalues y with imaginary chemical potential. Probability distributions

pk,`(x, y)

Example:

p(1,1)(x, y) = ρ(1,1)(x, y)−
∫ s

0

dx′ ρ(2,1)(x
′, x, y)−

∫ t

0

dy′ ρ(1,2)(x, y, y
′)+. . .

– the probability distribution for the smallest “ordinary” eigenvalue to be x
while that of the valence quark is y.
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Similarly for the probability distribution of the smallest eigenvalue of the
valence quark (with chemical potential)

p(0,1) = ρ(0,1)(y) −
∫ y

0

dy′ ρ(0,2)(y, y
′) + . . .

This function depends on Σ and Fπ.

Fit Σ from the distribution of the eigenvalue with zero chemical potential.

Fit Fπ from the distribution of the eigenvalue with non-zero chemical
potential!
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Conclusions

• A chiral Random Two-Matrix Theory and a scaling regime with an
external vector source (“isospin chemical potential”)

• The source acts as a probe of the low-energy constant Fπ

• The lowest Dirac operator eigenvalue is distributed in a manner that
depends on Σ and Fπ

• So far an accurate expansion exists – work on the exact analytical
expression is in progress

• A new and inexpensive way to extract Fπ from lattice simulations at
finite volume
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