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Introduction

The general framework: study of the QCD phase diagram.
Low temperature and chemical potential: only LE DOFs excited.
Simplest possible approximation: include only the light
pseudoscalar mesons, i.e., the Goldstone bosons of the
spontaneously broken SUL(Nf )× SUR(Nf ) chiral symmetry.
In particular for Nf = 2 make use of the isomorphism
SU(2)× SU(2) ' SO(4) and study the O(4) model.
A special case of the general O(N) model; applications besides
low-energy QCD also e.g. in the electroweak interactions (Higgs
mechanism), or in condensed matter physics (spin models).
At large N, a 1/N expansion possible as a substitute for the
conventional perturbation theory.
Nonperturbative technique which preserves, even at the leading
order, “much more of the nonlinear structure of the exact theory
than does ordinary lowest-order perturbation theory”.
Coleman, Jackiw, and Politzer, PRD10 (1974) 2491
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1/N expansion

At finite temperature, used in combination with the 1PI or 2PI
formalism as a resummation scheme to improve the bad
convergence of the finite-temperature perturbation theory.
O(N) model studied in the 1PI-1/N expansion since long time
ago.
Coleman, Jackiw, and Politzer, PRD10 (1974) 2491 (LO at T = 0)

Root, PRD10 (1974) 3322 (NLO at T = 0)

Meyers-Ortmanns, Pirner, and Schaefer, PLB311 (1993) 213 (LO at T 6= 0)

Andersen, Boer, and Warringa, PRD70 (2004) 116007 (NLO pressure at T 6= 0)

O(N) model studied in the 2PI-1/N formalism extensively as
well.
Baym and Grinstein, PRD15 (1977) 2897; Amelino-Camelia and Pi, PRD47 (1993) 2356

Petropoulos, JPG25 (1999) 2225; Lenaghan and Rischke, JPG26 (2000) 431

Aarts and Martinez Resco, JHEP02 (2004) 061

Here: 1PI-1/N expansion to NLO including the solution of the
gap equation, at nonzero temperature and chemical potential.
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1/N expansion continued

Generalize the O(4) model to arbitrary N by a suitable
redefinition of the couplings.
Perform the (nonperturbative) resummation to a given order in
1/N and set N = 4 afterwards. Hope that 4 is large enough.
Some leading-order, O(N), contributions to the pressure:

Some next-to-leading-order, O(1), contributions to the pressure:
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Auxiliary field technique

A real scalar N-vector, φ = (π1, π2, . . . , πN−1, σ).
Include isospin chemical potential for the pair (π1, π2) ∼ (π+, π−).
Include explicit chiral symmetry breaking (quark mass) in terms
of a source for φN ∼ σ.
Define all the couplings so that the action scales naturally with N.

L =
1
2

(∂µφi)
2 +

λb

8N
(φiφi − Nf 2

π,b)
2

−
√

NHφN − iµδµ0(φ1∂µφ2 − φ2∂µφ1)−
1
2

µ2(φ2
1 + φ2

2)

Introduce a new auxiliary field α and add pure Gaussian integral
over α.

∆L =
N

2λb

[
α− iλb

2N
(φiφi − Nf 2

π,b)

]2

Integrate over the non-condensing fields π3, . . . , πN−1.

L =
1
2

(N − 3) Tr log (−∂2 − iα) +
1
2

∑
i=1,2,N

[
(∂µφi)

2 − iαφ2
i

]
+

+
i
2

Nf 2
π,bα +

N
2λb

α2−
√

NHφN−iµδµ0(φ1∂µφ2 − φ2∂µφ1)−
1
2

µ2(φ2
1 + φ2

2)
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Introduce the condensates ρ̄ = 1√
N
〈φ1〉, σ̄ = 1√

N
〈φN〉,

m2 = −i〈α〉, and shift the fields.

φ1 =
√

Nρ̄ + π̃1, φN =
√

Nσ̄ + σ̃, α = im2 +
α̃√
N

Expand the action (thermodynamic potential) in powers of 1/N.
At NLO, the path integral over the field fluctuations is Gaussian
and hence exactly calculable.

SNLO
eff

βV
=

1
2

(N − 3)
∑∫

P
log(P2 + m2)− NHσ̄ − Nm4

2λb
+

+
1
2

Nm2(σ̄2 − f 2
π,b) +

1
2

(m2 − µ2)Nρ̄2 +
1
2
∑∫

P
χTD−1χ∗

D−1 =


1
2Π(P, m) + 1

λb
−iσ̄ −i ρ̄ 0

−iσ̄ P2 + m2 0 0
−i ρ̄ 0 P2 + m2 − µ2 −2µω
0 0 +2µω P2 + m2 − µ2

 , χ =


α̃
σ̃
π̃1

π2


Π(P, m) =

∑∫
Q

1
Q2 + m2

1
(P + Q)2 + m2
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Inverse propagators

For simplicity, only consider the case µ = 0 ⇒ mixing only in the
(α̃, σ̃) block, separate propagation of degenerate pions.

Inverse propagator of α̃.

D−1
α̃ (P, m) =

1
2

Π(P, m) +
1
λb

+
σ̄2

P2 + m2
λb→0−−−→ 1

λb

Inverse propagator of σ̃.

D−1
σ̃ (P, m) = P2 + m2 +

σ̄2

1
2Π(P, m) + 1

λb

λb→0−−−→ P2 + m2 + λbσ̄
2

Both σ̃ and α̃ describe the propagation of the same mode.

D−1
α̃ = D−1

σ̃

1
2Π + 1

λb

P2 + m2

Those are all results of the resummation of the NLO in the 1/N
expansion. In the λb → 0 limit, we recover perturbative results.
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LO effective potential

At LO, the only quantum contribution to the thermodynamic
potential comes from the N − 3 “pions” π3, · · · , πN−1.

VLO =
m2

2
(f 2

π,b − σ̄2 − ρ̄2) +
m4

2λb
+

1
2

µ2ρ̄2 + Hσ̄ − 1
2
∑∫

P
log(P2 + m2)

=
m2

2
(f 2

π − σ̄2 − ρ̄2) +
T 4

64π2 J0(βm) +
m4

64π2

(
32π2

λ
+ log

Q2

m2 +
1
2

)
+

1
2

µ2ρ̄2 + Hσ̄

where J0(βm) =
32

3T 4

∫ ∞
0

dp
p4

ωp
n(ωp) and ωp =

√
p2 + m2

LO renormalization by redefinition of the parameters.

f 2
π = f 2

π,b −
Λ2

16π2 ,
32π2

λ
=

32π2

λb
+ log

Λ2

Q2

LO β-function: β(λ) = λ2

16π2 .
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LO gap equations

Solve the LO gap equations.

G = 16π2f 2
π , H = m2σ̄, (m2 − µ2)ρ̄ = 0

G = 16π2(σ̄2 + ρ̄2) + T 2J1(βm)−m2 log
Q2

m2 −
32π2m2

λ

J1(βm) =
8

T 2

∞∫
0

dp
p2

ωp
n(ωp)

Chiral limit: H = 0.
Chiral-symmetry-breaking phase, just the σ̄ condensate.
Pion-condensation phase, just the ρ̄ condensate.
Normal phase

Physical point: H 6= 0.
Pion-condensation phase, just the ρ̄ condensate.
Normal phase.
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Chiral limit

The chiral-symmetry-breaking phase is never energetically favorable,
except at µ = 0 where it is degenerate with pion condensation.

Normal phase: σ̃ is
degenerate with the pions.
Their common mass is
given implicitly by

16π2f 2
π = T 2J1(βm)−m2 log

Q2

m2 −
32π2m2

λ

Nonzero m2 only for
T ≥ T (m)

c =
√

12fπ.

Above T (m)
c , m2 increases

with T until it reaches the
value m2 = µ2 at the
critical temperature for
pion condensation.

Pion-condensation phase:
m2 = µ2, pion condensate ρ̄ is
given explicitly by

16π2f 2
π = 16π2ρ̄2 + T 2J1(βµ)− µ2 log

Q2

µ2 −
32π2µ2

λ

Pion condensate grows with
chemical potential and
decreases with temperature.

Critical temperature for pion
condensation increases with
chemical potential.
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Numerical results

Analytical expression for the chiral condensate σ̄ (or ρ̄) at µ = 0:

σ̄2 = f 2
π −

T 2
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Physical point

σ̄ (as well as m2) is always nonzero ⇒ it is not an order
parameter for spontaneous symmetry breaking.

In the normal phase, m2 solves the implicit equation

16π2f 2
π = 16π2

(
H
m2

)2

+ T 2J1(βm)−m2 log
Q2

m2 −
32π2m2

λ

In the pion-condensation phase, ρ̄ solves the implicit equation

16π2f 2
π = 16π2

[(
H
µ2

)2

+ ρ̄2

]
+ T 2J1(βµ)− µ2 log

Q2

µ2 −
32π2µ2

λ

At critical chemical potential for pion condensation, m2 = µ2 and
ρ̄ = 0.

At fixed temperature, pion condensation occurs at chemical
potential equal to the renormalized pion mass at µ = 0.

J. O. Andersen and T. Brauner O(N) sigma model



O(N) sigma model and 1PI-1/N expansion
Leading order

Next-to-leading order
Summary

Sigma and pion condensates
Phase diagram

Numerical results

120140160180200220240260280300

0 50 100 150 200 250 300
m(MeV)

T (MeV)0 50 100150200250 300

101520
253035
404550
5560

0 50 100 150 200 250 300
�(MeV)

T (MeV)

0 50 100150
200250300 01020

304050
607080
90

0 50 100 150 200 250 300
�(MeV)

T (MeV)0 50 100
150 200 250 300

Parameter set:

λ(Q = 100 MeV) = 30, fπ = 47 MeV, H = (104 MeV)3

Chiral-symmetry-breaking parameter H chosen in order to
reproduce the (LO) renormalized pion mass mπ = 138 MeV.
Warringa, hep-ph/0604105 (PhD thesis)
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The phase boundary is given by
the solution of the implicit equation

16π2f 2
π =

16π2H2

µ4 + T 2J1(βµ)− µ2 log
Q2

µ2 −
32π2µ2

λ

In the weak-coupling limit, we get
an analytic expression for the
critical temperature.

T 2
c = 12

(
f 2
π +

2µ2

λ
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Chiral limit

Physial point
At large chemical potential, the effects of explicit chiral symmetry
breaking are negligible.
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1 O(N) sigma model and 1PI-1/N expansion
O(N) sigma model
Auxiliary field technique
1PI-1/N expansion
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Sigma and pion condensates
Phase diagram
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Sigma and pion condensates
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NLO effective potential

NLO expression for the effective potential (pressure):

VNLO =
∑∫

P
log(P2 + m2)− 1

2
∑∫

P
log[(P2 + M2)2 + (2µω)2]− 1

2
∑∫

P
log J(P, m)

1
32π2 J(P, m) =

1
2

Π(P, m) +
1
λb

+
σ̄2

P2 + m2 +
ρ̄2(P2 + M2)

(P2 + M2)2 + (2µω)2

The correction due to the finite chemical potential of the free pion
gas is “analytically” calculable.

T 4

64π2

[
K +

0 (βm, βµ) + K−0 (βm, βµ)− 2J0(βm)
]
, K±0 (βm, βµ) =

32
3T 4

∫ ∞
0

dp
p4

ωp
n(ωp ± µ)

The correction due to the dynamics of σ̃ and α̃ must be
evaluated numerically.

However, at least the divergences may be extracted analytically,
which is essential for the renormalization.
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Extraction of divergences

Expand the log in VNLO in powers of momentum.

log J = log
(

α + log
Λ2

P2

)
+

2
P2

(
m2 +

G − 2m2

α + log Λ2

P2

)
− 2

P4

2m4 +
3m2(G − 3

2 m2)

α + log Λ2

P2

+
(G − 2m2)2(
α + log Λ2

P2

)2

+

+UV-finite terms

G = 16π2(σ̄2 + ρ̄2) + T 2J1(βm)−m2 log
Q2

m2 −
32π2m2

λ
, α = 1 +

32π2

λb

Quartic UV-divergence, independent of m, σ̄, ρ̄.

Quadratic UV-divergence.

Logarithmic UV-divergence. Also IR divergent: This IR
divergence is absent in the full expression for J(P, m), but for
sake of numerical computation must be conveniently regulated.
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NLO renormalization

Divergent part of the effective potential after integration using
momentum cutoff Λ:

V div
NLO =

1
16π2

[
(G − 2m2)Λ2eαli

(
1

eα

)
−m2Λ2 + 2m4 log

Λ2

m2 − 3m2(G − 3
2

m2) log α +
(G − 2m2)2

α

]

The divergences only T -independent after using the LO gap
equation G = 16π2f 2

π ! ⇒ it was reported that the effective
potential is only renormalizable at the minimum.
Andersen, Boer, and Warringa, PRD70 (2004) 116007

The NLO renormalization prescription is then

f 2
π = f 2

π,b +
Λ2

16π2

{
1 +

2
N

[
1 + 2eαli

(
1

eα

)]}
32π2

λ
=

32π2

λb
+

(
1 +

8
N

)
log

Λ2

Q2 , β(λ) =
λ2

16π2

(
1 +

8
N

)
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The problem of T -dependent divergences is related to the
presence of the auxiliary field α.

Only the LO gap equation for 〈α〉 = im2 was used!

When this is treated as merely a constraint to eliminate m2 in
favor of σ̄, ρ̄, we get an effective potential of σ̄, ρ̄ solely, which is
renormalizable for any value of the classical fields.
Coleman, Jackiw, and Politzer, PRD10 (1974) 2491

Systematic expansion of the effective potential as a function of
σ̄, ρ̄ then starts with

VLO(mLO(σ̄, ρ̄), σ̄, ρ̄) +
1
N

VNLO(mLO(σ̄, ρ̄), σ̄, ρ̄) + · · ·

To get the effective potential at NLO, we only need to solve the
LO constraint for m2. This justifies our renormalization
procedure.
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Chiral limit

The chiral condensate increases significantly. Also, the critical
temperature for symmetry restoration increases by about 25%.
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The parameter m acquires nonzero value even in the
symmetry-broken phase. This is no contradiction with the
Goldstone theorem, since at NLO m has no longer the
interpretation as the pion mass.
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Physical point: temperature axis

Both the chiral condensate and the mass parameter change
rather decently ⇒ 1/N is a reasonable expansion parameter
even for N = 4.
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Chiral condensate at T = 0 slightly increases ⇒ the physical
pion mass slightly reduces.
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Physical point: chemical potential axis

The change in the critical chemical potential for pion
condensation is in accord with the correction of the
physical pion mass.
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Minimum of the NLO effective potential was only found for
not-too-large chemical potential. For larger µ the effective
potential seems to acquire nonzero imaginary part.
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NLO phase diagram

So far, only the NLO
correction to the phase
diagram in the chiral limit.

The NLO critical temperature
stays almost constant up to
chemical potential about
75 MeV, where it merges with
the LO curve.

Preliminary!
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Chiral limit

Physial point
Apparently a strong-coupling effect, since the weak-coupling analysis
predicts a decrease of critical temperature at NLO.

Tc =

√
12

1 + 2
N

fπ at µ = 0
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Summary

To determine the NLO contribution to the pressure, it is only
necessary to solve the gap equation at the leading order. We
have extended previous calculations to nonzero chemical
potential.

We have shown that the NLO effective action in the 1/N
expansion can be consistently renormalized for all values of the
classical field.

We have renormalized and solved the NLO gap equation, and
determined the NLO phase diagram (so far, in the chiral limit).

The NLO corrections to the pressure are decent, less than 1/N
⇒ 1/N is a good expansion parameter even for N = 4.

However, the chiral and pion condensates may display rather
large deviations from the LO values, especially in the chiral limit.

J. O. Andersen and T. Brauner O(N) sigma model



O(N) sigma model and 1PI-1/N expansion
Leading order

Next-to-leading order
Summary

Summary

To determine the NLO contribution to the pressure, it is only
necessary to solve the gap equation at the leading order. We
have extended previous calculations to nonzero chemical
potential.

We have shown that the NLO effective action in the 1/N
expansion can be consistently renormalized for all values of the
classical field.

We have renormalized and solved the NLO gap equation, and
determined the NLO phase diagram (so far, in the chiral limit).

The NLO corrections to the pressure are decent, less than 1/N
⇒ 1/N is a good expansion parameter even for N = 4.

However, the chiral and pion condensates may display rather
large deviations from the LO values, especially in the chiral limit.

J. O. Andersen and T. Brauner O(N) sigma model



O(N) sigma model and 1PI-1/N expansion
Leading order

Next-to-leading order
Summary

Summary

To determine the NLO contribution to the pressure, it is only
necessary to solve the gap equation at the leading order. We
have extended previous calculations to nonzero chemical
potential.

We have shown that the NLO effective action in the 1/N
expansion can be consistently renormalized for all values of the
classical field.

We have renormalized and solved the NLO gap equation, and
determined the NLO phase diagram (so far, in the chiral limit).

The NLO corrections to the pressure are decent, less than 1/N
⇒ 1/N is a good expansion parameter even for N = 4.

However, the chiral and pion condensates may display rather
large deviations from the LO values, especially in the chiral limit.

J. O. Andersen and T. Brauner O(N) sigma model



O(N) sigma model and 1PI-1/N expansion
Leading order

Next-to-leading order
Summary

Summary

To determine the NLO contribution to the pressure, it is only
necessary to solve the gap equation at the leading order. We
have extended previous calculations to nonzero chemical
potential.

We have shown that the NLO effective action in the 1/N
expansion can be consistently renormalized for all values of the
classical field.

We have renormalized and solved the NLO gap equation, and
determined the NLO phase diagram (so far, in the chiral limit).

The NLO corrections to the pressure are decent, less than 1/N
⇒ 1/N is a good expansion parameter even for N = 4.

However, the chiral and pion condensates may display rather
large deviations from the LO values, especially in the chiral limit.

J. O. Andersen and T. Brauner O(N) sigma model


	O(N) sigma model and 1PI-1/N expansion
	O(N) sigma model
	Auxiliary field technique
	1PI-1/N expansion

	Leading order
	Sigma and pion condensates
	Phase diagram

	Next-to-leading order
	Renormalization
	Sigma and pion condensates
	Phase diagram

	Summary

