Equivalence of χ RMT and $\epsilon \chi$ PT at non zero chemical potential

Basile Francesco
in collaboration with Gernot Akemann

Università di Pisa \& Brunel University

The question

...suppose we have two "different" theories describing the same objects and seeming to give the same results...
...but do they give the very same results? for any possible observable?

Which theories

ε QCD
a strange but "not-extreme" QCD...
Finite volume QCD $\left(1 / \Lambda \ll L \ll 1 / m_{\pi}\right)$, when $V \rightarrow \infty, m \Sigma V$ and $\mu^{2} F_{\pi}^{2} V$ stay finite. Altough it cannot describe full QCD it has many applications (extrapolations of low energy constants from small lattices, sign problem, finite volume corrections...)

Dirac Operator properties in low energy regions may be computed analytically using effective theories

Which theories

Which theories

$$
\begin{aligned}
& \varepsilon \mathrm{QCD} \\
& \int d A e^{-\alpha N T r\left[A^{\dagger} A\right]} \prod_{f}^{N_{f}} \mathcal{D} e t\left[\begin{array}{cc}
m_{f} \mathbf{1}_{N_{+}} & i A \\
i A^{\dagger} & m_{f} \mathbf{1}_{N_{-}}
\end{array}\right]
\end{aligned}
$$

$N_{+} \times N_{-}=\left(N_{-}+\nu\right) \times N_{-}$Random Matrix A

Which theories

Does exist a direct link?

Which theories

Does exist a direct link? and for $\mu \neq 0$?

$\varepsilon \chi \mathbf{P T} \stackrel{? ?}{\stackrel{n}{m}, \chi \mathbf{R M T}}$

Do they give the very same predictions?

$\varepsilon \chi \mathbf{P T}{ }^{? ?}{ }^{n} \mathbf{R M T}$

Do they give the very same predictions?
■ $\mu=0 \quad Z_{\varepsilon \chi P T}(M)=Z_{\chi R M T}(M)$

Shuryak,Verbaarschot '93

$\varepsilon \chi \mathbf{P T}{ }^{? ?} \chi \mathbf{R M T}$

Do they give the very same predictions?

- $\mu=0 \quad Z_{\varepsilon \chi P T}(M)=Z_{\chi R M T}(M)$

■ $\mu=0 \quad \rho_{\varepsilon \chi P T}(z, M=0)=\rho_{\chi R M T}(z, M=0)$

Damgaard,Osborn,Toublan,Verbaarschot ' 99 + Verbaarschot,Zahed '93

$\varepsilon \chi \mathbf{P T}{ }^{? ?} \chi \mathbf{R M T}$

Do they give the very same predictions?

- $\mu=0 \quad Z_{\varepsilon \chi P T}(M)=Z_{\chi R M T}(M)$
- $\mu=0 \quad \rho_{\varepsilon \chi P T}(z, M=0)=\rho_{\chi R M T}(z, M=0)$

■ $\mu=0 \quad N_{f}=1, \rho_{\varepsilon \chi P T}(z, m)=\rho_{\chi R M T}(z, m)$

Damgaard,Osborn,Toublan, Verbaarschot '99,
Damgaard,Nishigaki,Wilke,Guhr,Wettig,Seif '98

$\varepsilon \chi \mathbf{P T}{ }^{? ?} \chi \mathbf{R M T}$

Do they give the very same predictions?

- $\mu=0 \quad Z_{\varepsilon \chi P T}(M)=Z_{\chi R M T}(M)$
- $\mu=0 \quad \rho_{\varepsilon \chi P T}(z, M=0)=\rho_{\chi R M T}(z, M=0)$
- $\mu=0 \quad N_{f}=1, \rho_{\varepsilon \chi P T}(z, m)=\rho_{\chi R M T}(z, m)$

■ $\mu=0$ quenched, $\rho_{\varepsilon \chi P T}\left(z_{1}, z_{2}\right)=\rho_{\chi R M T}\left(z_{1}, z_{2}\right)$

Toublan,Verbaarschot '98, Verbaarschot,Zahed '93

$\varepsilon \chi \mathbf{P T}{ }^{? ?}{ }^{n}$ RMT

Do they give the very same predictions?

- $\mu=0 \quad Z_{\varepsilon \chi P T}(M)=Z_{\chi R M T}(M)$
- $\mu=0 \quad \rho_{\varepsilon \chi P T}(z, M=0)=\rho_{\chi R M T}(z, M=0)$
- $\mu=0 \quad N_{f}=1, \rho_{\varepsilon \chi P T}(z, m)=\rho_{\chi R M T}(z, m)$
- $\mu=0$ quenched, $\rho_{\varepsilon \chi P T}\left(z_{1}, z_{2}\right)=\rho_{\chi R M T}\left(z_{1}, z_{2}\right)$

■ $\mu \neq 0 \quad Z_{\varepsilon \chi P T}(M)=Z_{\chi R M T}(M)$

Osborn '06

$\varepsilon \chi \mathbf{P T}{ }^{? ?}{ }^{n}$ RMT

Do they give the very same predictions?

- $\mu=0 \quad Z_{\varepsilon \chi P T}(M)=Z_{\chi R M T}(M)$
- $\mu=0 \quad \rho_{\varepsilon \chi P T}(z, M=0)=\rho_{\chi R M T}(z, M=0)$
- $\mu=0 \quad N_{f}=1, \rho_{\varepsilon \chi P T}(z, m)=\rho_{\chi R M T}(z, m)$
- $\mu=0$ quenched, $\rho_{\varepsilon \chi P T}\left(z_{1}, z_{2}\right)=\rho_{\chi R M T}\left(z_{1}, z_{2}\right)$
- $\mu \neq 0 \quad Z_{\varepsilon \chi P T}(M)=Z_{\chi R M T}(M)$

■ $\mu \neq 0$ quenched $\rho_{\varepsilon \chi P T}\left(z, z^{*}\right)=\rho_{\chi R M T}\left(z, z^{*}\right)$
Splittorff,Verbaarschot '02, Osborn '04

The question

Are these all the possible predictions?

The question

Are these all the possible predictions?
Obviuosly not. Apart from academic question there are usefull quantities (like the individual e.v. distribution function) that need further knowledge (all the spectral correlation function).

The question

Are these all the possible predictions?
Obviuosly not. Apart from academic question there are usefull quantities (like the individual e.v. distribution function) that need further knowledge (all the spectral correlation function).
Why are we interested in this question?
\square different universality arguments leading to these theories
$\square \varepsilon \chi$ PT is more physical, χ RMT is solved
■ (math) exact map of RMT to the underlying microscopical theory
\square this equivalence is accepted, but a proof is still lacking

The answer: yes

The two theories have the very same spectral properties. This result holds for all N_{f}, masses and chemical potentials.

The answer: yes

The two theories have the very same spectral properties. This result holds for all N_{f}, masses and chemical potentials.
How to prove it?

D.O. in χ RMT
$\stackrel{?}{=} \quad$ D.O. in $\varepsilon \chi$ PT

The answer: yes

The two theories have the very same spectral properties. This result holds for all N_{f}, masses and chemical potentials.
How to prove it?

$$
\begin{array}{ll}
\text { D.O. in } \chi \text { RMT } & \stackrel{?}{=} \\
\begin{array}{l}
\text { R in pq- } \chi \mathrm{RMT}
\end{array} & \text { D.O. in } \varepsilon \chi \mathrm{PT} \\
\uparrow
\end{array}
$$

The answer: yes

The two theories have the very same spectral properties. This result holds for all N_{f}, masses and chemical potentials.
How to prove it?
D.O. in χ RMT $=$ D.O. in $\varepsilon \chi$ PT
\uparrow
\mathbf{Z} in $\mathrm{pq}-\chi \mathrm{RMT} \stackrel{\text { superanalysis }}{\Longleftrightarrow} \mathrm{Z}$ in $\mathrm{pq}-\varepsilon \chi \mathrm{PT}$

Resolvent method

k-point correlation function of the e.v. λ_{j} of an operator D is generate by the expectation value of product of δ function

$$
\rho_{k}\left(z_{1}, \ldots, z_{k}\right) \sim\left\langle\prod_{\tilde{k}}^{k} \sum_{\lambda_{j} \in \text { e.v. }} \delta\left(z_{\tilde{k}}-\lambda_{j}\right)\right\rangle
$$

Resolvent method

k-point correlation function of the e.v. λ_{j} of an operator D is generate by the expectation value of product of δ function

$$
\begin{aligned}
\rho_{k}\left(z_{1}, \ldots, z_{k}\right) & \sim\left\langle\prod_{\tilde{k}}^{k} \sum_{\lambda_{j} \in \text { e.v. }} \delta\left(z_{\tilde{k}}-\lambda_{j}\right)\right\rangle \\
\sum_{\lambda_{j} \in \text { e.v. }} \delta\left(z_{\tilde{k}}-\lambda_{j}\right) & =\oint_{z \simeq 0} d z \sum_{\lambda_{j} \in \text { e.v. }} \frac{1}{z-z_{\tilde{k}}-\lambda_{j}}
\end{aligned}
$$

Resolvent method

k-point correlation function of the e.v. λ_{j} of an operator D is generate by the expectation value of product of δ function

$$
\begin{gathered}
\rho_{k}\left(z_{1}, \ldots, z_{k}\right) \sim\left\langle\prod_{\tilde{k}}^{k} \sum_{\lambda_{j} \in \text { e.v. }} \delta\left(z_{\tilde{k}}-\lambda_{j}\right)\right\rangle \\
\sum_{\lambda_{j} \in \text { e.v. }} \delta\left(z_{\tilde{k}}-\lambda_{j}\right)=\oint_{z=0} d z \sum_{\lambda_{j} \in \text { e.v. }} \frac{1}{z-z_{\tilde{k}}-\lambda_{j}} \\
\sum_{\lambda_{j} \in \text { e.v. }} \frac{1}{z-z_{k}-\lambda_{j}}=\frac{\partial}{\partial z^{\prime}} \frac{\prod_{j}\left(z^{\prime}-z_{k}-\lambda_{j}\right)}{\prod_{j}\left(z-z_{k}-\lambda_{j}\right)}
\end{gathered}
$$

Resolvent method

k-point correlation function of the e.v. λ_{j} of an operator D is generate by the expectation value of product of δ function

$$
\begin{gathered}
\rho_{k}\left(z_{1}, \ldots, z_{k}\right) \sim\left\langle\prod_{\tilde{k}}^{k} \sum_{\lambda_{j} \in \text { e.v. }} \delta\left(z_{\tilde{k}}-\lambda_{j}\right)\right\rangle \\
\sum_{\lambda_{j} \in \text { e.v. }} \delta\left(z_{\tilde{k}}-\lambda_{j}\right)=\oint_{z \approx 0} d z \sum_{\lambda_{j} \in \text { e.v. }} \frac{1}{z-z_{\tilde{k}}-\lambda_{j}} \\
\sum_{\lambda_{j} \in \text { e.v. }} \frac{1}{z-z_{k}-\lambda_{j}}=\frac{\partial}{\partial z^{\prime}} \frac{\prod_{j}\left(z^{\prime}-z_{k}-\lambda_{j}\right)}{\prod_{j}\left(z-z_{k}-\lambda_{j}\right)}=\frac{\partial}{\partial z^{\prime}} \frac{\operatorname{Det}\left[z^{\prime}-z_{k}-D\right]}{\operatorname{Det}\left[z-z_{k}-D\right]}
\end{gathered}
$$

Resolvent method

Hermitian $\mathcal{D}, \mu=0$
use the resolvent method to generate the k-point correlation function
\Rightarrow partially quenched QCD, pq-QCD:
theory with N_{f} fermions $\rightarrow N_{f}+k$ fermions, k bosons

Resolvent method

Hermitian $\mathcal{D}, \mu=0$
use the resolvent method to generate the k-point correlation function
\Rightarrow partially quenched QCD, pq-QCD:
theory with N_{f} fermions $\rightarrow N_{f}+k$ fermions, k bosons
non Hermitian $\mathcal{D}, \mu \neq 0$
$\ldots \rightarrow \mathrm{pq}-\mathrm{QCD}:$
theory with N_{f} fermions $\rightarrow N_{f}+2 k$ fermions, $2 k$ bosons

Resolvent method

Hermitian $\mathcal{D}, \mu=0$
use the resolvent method to generate the k-point correlation function
\Rightarrow partially quenched QCD, pq-QCD:
theory with N_{f} fermions $\rightarrow N_{f}+k$ fermions, k bosons
non Hermitian $\mathcal{D}, \mu \neq 0$
$\ldots \rightarrow$ pq-QCD:
theory with N_{f} fermions $\rightarrow N_{f}+2 k$ fermions, $2 k$ bosons

Consider the $\left(n_{b} \mid n_{f}\right)$ theory with n_{f} fermions and n_{b} bosons, with generic m_{i} and μ_{i}

Outline of the proof

Outline: pq- χ RMT $\rightarrow \mathrm{pq}-\varepsilon \chi$ PT

- Ratio of determinants as gaussian integral of two sets of supervectors
- Explicit integration of the RM
- Explicit integration of one set of supervectors
- Apply a theorem (super-bosonisation) to write the remanining supervectors integrations as integral on $\hat{G L}\left(n_{b} \mid n_{f}\right)$

Outline of the proof

$$
Z_{\chi R M T}^{p q}=\int d A e^{-\alpha N T r\left[A^{\dagger} A\right]} \frac{\prod_{f}^{n_{f}} \mathcal{D} e t\left[\begin{array}{cc}
m_{f} \mathbf{1}_{N_{+}} & i A \\
i A^{\dagger} & m_{f} \mathbf{1}_{N_{-}}
\end{array}\right]}{\prod_{b}^{n_{b}} \operatorname{Det}\left[\begin{array}{cc}
m_{b} \mathbf{1}_{N_{+}} & i A \\
i A^{\dagger} & m_{b} \mathbf{1}_{N_{-}}
\end{array}\right]}
$$

$\operatorname{Det}[\cdot]=$ gaussian superintegral

$$
\begin{aligned}
& Z_{\chi R M T}^{p q}=\int d A e^{-\alpha N T r\left[A^{\dagger} A\right]} \frac{\prod_{f}^{n_{f}} \operatorname{Det}\left[\begin{array}{cc}
m_{f} \mathbf{1}_{N_{+}} & i A \\
i A^{\dagger} & m_{f} 1_{N-}
\end{array}\right]}{\prod_{b}^{n_{b}} \operatorname{Det}\left[\begin{array}{cc}
m_{b} \mathbf{1}_{N_{+}} & i A \\
i A^{\dagger} & m_{b} \mathbf{1}_{N-}
\end{array}\right]} \\
& \int d\left(\psi \psi^{*} \phi \phi^{*}\right) e^{-\sum_{g=-n_{f}}^{n_{b}}\binom{\psi_{g, \alpha}^{*}}{\phi_{g, \beta}^{*}}\left(\begin{array}{cc}
m_{g} \mathbf{1}_{\alpha, \alpha^{\prime}} & i A_{\alpha, \beta^{\prime}} \\
i A_{\beta, \alpha^{\prime}}^{\dagger} & m_{g} \mathbf{1}_{\beta, \beta^{\prime}}
\end{array}\right)\binom{\psi_{g, \alpha^{\prime}}}{\phi_{g, \beta^{\prime}}}}
\end{aligned}
$$

Explicit integration of the RM

$$
\begin{aligned}
& Z_{\chi R M T}^{p q}=\int d A e^{-\alpha N T r\left[A^{\dagger} A\right]} \frac{\prod_{f}^{n_{f}} \operatorname{Det}\left[\begin{array}{cc}
m_{f} 1_{N_{+}} & i A \\
i A^{\dagger} & m_{f} 1_{N_{-}}
\end{array}\right]}{\prod_{b}^{n_{b}} \operatorname{Det}\left[\begin{array}{cc}
m_{b} 1_{N_{+}} & i A \\
i A^{\dagger} & m_{b} 1_{N_{-}}
\end{array}\right]}
\end{aligned}
$$

Explicit integration of the RM

$$
\begin{gathered}
Z_{\chi R M T}^{p q}=\int d A e^{-\alpha N T r\left[A^{\dagger} A\right]} \frac{\prod_{f}^{n_{f}} \operatorname{Det}\left[\begin{array}{cc}
m_{f} \mathbf{1}_{N_{+}} & i A \\
i A^{\dagger} & m_{f} \mathbf{1}_{N-}
\end{array}\right]}{\prod_{b}^{n_{b}} \operatorname{Det}\left[\begin{array}{cc}
m_{b} \mathbf{1}_{N_{+}} & i A \\
i A^{\dagger} & m_{b} \mathbf{1}_{N_{-}}
\end{array}\right]} \\
\int d\left(\psi \psi^{*} \phi \phi^{*}\right) e^{-\sum_{g=-n_{f}}^{n_{b}}\binom{\psi_{, \alpha, \alpha}^{*}}{\phi_{g, \beta}^{*}}\left(\begin{array}{cc}
m_{g} \mathbf{1}_{\alpha, \alpha^{\prime}} & i A_{\alpha, \beta^{\prime}} \\
i A_{\beta, \alpha^{\prime}}^{\dagger} & m_{g} \mathbf{1}_{\beta, \beta^{\prime}}
\end{array}\right)\binom{\psi_{g, \alpha^{\prime}}}{\phi_{g, \beta^{\prime}}}} \\
=e^{-\frac{1}{\alpha N} S t r\left[s_{g} \cdot \sum_{\beta} \phi_{g, \beta} \otimes \phi_{h, \beta}^{\dagger} \cdot s_{h} \cdot \sum_{\alpha} \psi_{h, \alpha} \otimes \psi_{g, \alpha}^{\dagger}\right]}
\end{gathered}
$$

$$
\begin{aligned}
Z_{p q} \propto & \int d\left(\psi \psi^{*} \phi \phi^{*}\right) e^{-\operatorname{Str}\left[m_{g} \cdot \sum_{\alpha} \psi_{g, \alpha} \otimes \psi_{g, \alpha}^{\dagger}+m_{g} \cdot \sum_{\beta} \phi_{g, \beta} \otimes \phi_{g, \beta}^{\dagger}\right]} \\
& e^{-\frac{1}{\alpha N} \operatorname{Str}\left[\sum_{\beta} \phi_{g, \beta} \otimes \phi_{h, \beta}^{\dagger} \cdot \sum_{\alpha} \psi_{h, \alpha} \otimes \psi_{g, \alpha}^{\dagger}\right]}
\end{aligned}
$$

Integrate of 1 set of supervectors

$$
\begin{aligned}
Z_{p q} \propto & \int d\left(\psi \psi^{*} \phi \phi^{*}\right) e^{-\operatorname{Str}\left[m_{g} \cdot \sum_{\alpha} \psi_{g, \alpha} \otimes \psi_{g, \alpha}^{\dagger}+m_{g} \cdot \sum_{\beta} \phi_{g, \beta} \otimes \phi_{g, \beta}^{\dagger}\right]} \\
& e^{-\frac{1}{\alpha N} \operatorname{Str}\left[\sum_{\beta} \phi_{g, \beta} \otimes \phi_{h, \beta}^{\dagger} \cdot \sum_{\alpha} \psi_{h, \alpha} \otimes \psi_{g, \alpha}^{\dagger}\right]}
\end{aligned}
$$

use that:

$$
\int d\left(\gamma^{*} \gamma\right) e^{-S t r\left[A \cdot \gamma \otimes \gamma^{\dagger}\right]}=\frac{1}{\mathcal{S} \operatorname{det}[A]}
$$

Integrate of 1 set of supervectors

$$
\begin{aligned}
Z_{p q} \propto & \int d\left(\psi \psi^{*} \phi \phi^{*}\right) e^{-\operatorname{Str}\left[m_{g} \cdot \sum_{\alpha} \psi_{g, \alpha} \otimes \psi_{g, \alpha}^{\dagger}+m_{g} \cdot \sum_{\beta} \phi_{g, \beta} \otimes \phi_{g, \beta}^{\dagger}\right]} \\
& e^{-\frac{1}{\alpha N} \operatorname{Str}\left[\sum_{\beta} \phi_{g, \beta} \otimes \phi_{h, \beta}^{\dagger} \cdot \sum_{\alpha} \psi_{h, \alpha} \otimes \psi_{g, \alpha}^{\dagger}\right]}
\end{aligned}
$$

$Z_{p q} \propto \int d\left(\psi \psi^{*}\right) e^{-S t r}\left[m_{g} \cdot \sum_{\alpha} \psi_{g, \alpha} \otimes \psi_{g, \alpha}^{\dagger}\right]$
$\mathcal{S} \operatorname{det}\left[\frac{1}{N} M_{g h}+\frac{1}{\alpha N} \sum_{\alpha} \psi_{g, \alpha} \otimes \psi_{h, \alpha}^{\dagger}\right]^{-N_{-}}$

A theorem

super-bosonisation theorem:

$$
\int d^{N} \psi \psi^{\dagger} f\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}\right)=\int_{\hat{G} L\left(n_{b} \mid n_{f}\right)} \mu_{H}(U) \mathcal{S} \operatorname{det}[U]^{N} f(U)
$$

$\mu_{H}(U)$ is the Haar measure on $\hat{G L}\left(n_{b} \mid n_{f}\right)$

A theorem

Super-bosonisation theorem:

$$
\int d^{N} \psi \psi^{\dagger} f\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}\right)=\int_{\hat{G L} L\left(n_{b} \mid n_{f}\right)} \mu_{H}(U) \operatorname{S} \operatorname{det}[U]^{N} f(U)
$$

$\mu_{H}(U)$ is the Haar measure on $\hat{G L} L\left(n_{b} \mid n_{f}\right)$
Independent proof to recent result by Zirmbauer et al.
Our idea:embed $\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}$ in the manifold of $H=H^{\dagger}$,define a δ function and perform the ψ, ψ^{\dagger} integration; find a relation between $H=H^{\dagger}$ and $\hat{G L}\left(n_{b} \mid n_{f}\right)$
Outline of the proof (a bit technical)

Apply the theorem

$Z_{p q} \propto \int d\left(\psi \psi^{*}\right) e^{-\operatorname{Str}\left[M_{g g} \cdot \frac{1}{N} \sum_{\alpha} \psi_{g, \alpha} \otimes \psi_{g, \alpha}^{\dagger}\right]}$

$$
\mathcal{S} d e t\left[\frac{1}{N} M_{g h}+\frac{1}{\alpha N} \sum_{\alpha} \psi_{g, \alpha} \otimes \psi_{h, \alpha}^{\dagger}\right]^{-N_{-}}
$$

Apply the theorem

$$
\begin{aligned}
Z_{p q} \propto & \int_{\hat{G L}\left(n_{b} \mid n_{f}\right)} \mu_{H}(U) \mathcal{S} \operatorname{det}[U]^{N_{-}+\nu} e^{-\operatorname{Str}\left[M_{g g} \cdot U\right]} \\
& \mathcal{S} \operatorname{det}\left[\frac{1}{N} M_{g h}+\frac{1}{\alpha} U\right]^{-N_{-}}
\end{aligned}
$$

$$
\begin{aligned}
Z_{p q} \propto & \int_{\hat{G L\left(n_{b} \mid n_{f}\right)}} \mu_{H}(U) \mathcal{S} \operatorname{det}[U]^{N_{-}+\nu} e^{-S t r\left[M_{g g} \cdot U\right]} \\
& \mathcal{S} \operatorname{det}\left[\frac{1}{N} M_{g h}+\frac{1}{\alpha} U\right]^{-N_{-}} \\
& \propto \int_{\hat{G L\left(n_{b} \mid n_{f}\right)}} \mu_{H}(U) \mathcal{S} \operatorname{det}[U]^{\nu} e^{-S t r[M \cdot U]} \\
& \mathcal{S} \operatorname{det}\left[1+\frac{\alpha}{N} M \cdot U^{-1}\right]^{-N_{-}}
\end{aligned}
$$

perform the $N \rightarrow \infty$ limit

$$
\begin{aligned}
Z_{p q} \propto & \int_{\hat{G L}\left(n_{b} \mid n_{f}\right)} \mu_{H}(U) \mathcal{S} d e t[U]^{N_{-}+\nu} e^{-\operatorname{Str}\left[M_{g g} \cdot U\right]} \\
& \mathcal{S} \operatorname{det}\left[\frac{1}{N} M_{g h}+\frac{1}{\alpha} U\right]^{-N_{-}} \\
& \propto \int_{\hat{G L}\left(n_{b} \mid n_{f}\right)} \mu_{H}(U) \mathcal{S} d e t[U]^{\nu} e^{-S t r[M \cdot U]} \\
& e^{-\frac{\alpha}{2} S t r\left[M \cdot U^{-1}\right]}
\end{aligned}
$$

The desired result for $\mu=0$

$$
\begin{aligned}
Z_{p q} \propto & \int_{\hat{G L\left(n_{b} \mid n_{f}\right)}} \mu_{H}(U) \mathcal{S} \operatorname{det}[U]^{N_{-}+\nu} e^{-S \operatorname{tr}\left[M_{g g} \cdot U\right]} \\
& \mathcal{S} \operatorname{det}\left[\frac{1}{N} M_{g h}+\frac{1}{\alpha} U\right]^{-N_{-}} \\
& \propto \int_{\hat{G} L\left(n_{b} \mid n_{f}\right)} \mu_{H}(U) \mathcal{S} \operatorname{det}[U]^{\nu} e^{-S t r[M \cdot U]} \\
& e^{-\frac{\alpha}{2} \operatorname{Str}\left[M \cdot U^{-1}\right]}
\end{aligned}
$$

$Z_{p q} \propto \int_{\hat{G L L\left(n_{b} \mid n_{f}\right)}} \mu_{H}(U) \mathcal{S} \operatorname{det}[U]^{\nu} e^{-\sqrt{\frac{\alpha}{2}} S t r\left[M \cdot U+M \cdot U^{-1}\right]}$

The proof at $\mu \neq 0$

$$
Z_{\chi R M T}^{p q}=\int d A d B e^{-\alpha N T r\left[A^{\dagger} A+B^{\dagger} B\right]} \frac{\prod_{f}^{n_{f}} \mathcal{D} e t\left[\begin{array}{cc}
m_{f} \mathbf{1}_{N_{+}} & i A+\mu_{f} B \\
i A^{\dagger}+\mu_{f} B^{\dagger} & m_{f} \mathbf{1}_{N_{-}}
\end{array}\right]}{\prod_{b}^{n_{b}} \mathcal{D} e t\left[\begin{array}{cc}
m_{b} \mathbf{1}_{N_{+}} & i A+\mu_{f} B \\
i A^{\dagger}+\mu_{f} B^{\dagger} & m_{b} \mathbf{1}_{N_{-}}
\end{array}\right]}
$$

The proof at $\mu \neq 0$

$$
Z_{\chi R M T}^{p q}=\int d A d B e^{-\alpha N T r\left[A^{\dagger} A+B^{\dagger} B\right]} \frac{\prod_{f}^{n_{f}} \mathcal{D} e t\left[\begin{array}{cc}
m_{f} \mathbf{1}_{N_{+}} & i A+\mu_{f} B \\
i A^{\dagger}+\mu_{f} B^{\dagger} & m_{f} \mathbf{1}_{N_{-}}
\end{array}\right]}{\prod_{b}^{n_{b}} \mathcal{D} e t\left[\begin{array}{cc}
m_{b} \mathbf{1}_{N_{+}} & i A+\mu_{f} B \\
i A^{\dagger}+\mu_{f} B^{\dagger} & m_{b} \mathbf{1}_{N_{-}}
\end{array}\right]}
$$

the same proof: determinant as a gaussian superintegration, integration of RMTs A and B, integration of ϕ, ϕ^{\dagger}, use the theorem, $N \rightarrow \infty$ limit

The proof at $\mu \neq 0$

$Z_{\chi R M T}^{p q}=\int d A d B e^{-\alpha N T r\left[A^{\dagger} A+B^{\dagger} B\right]} \frac{\prod_{f}^{n_{f}} \mathcal{D} e t\left[\begin{array}{cc}m_{f} \mathbf{1}_{N_{+}} & i A+\mu_{f} B \\ i A^{\dagger}+\mu_{f} B^{\dagger} & m_{f} \mathbf{1}_{N_{-}}\end{array}\right]}{\prod_{b}^{n_{b}} \mathcal{D} e t\left[\begin{array}{cc}m_{b} \mathbf{1}_{N_{+}} & i A+\mu_{f} B \\ i A^{\dagger}+\mu_{f} B^{\dagger} & m_{b} \mathbf{1}_{N_{-}}\end{array}\right]}$
the same proof: determinant as a gaussian superintegration, integration of RMTs A and B, integration of ϕ, ϕ^{\dagger}, use the theorem, $N \rightarrow \infty$ limit
$Z_{p q, \mu \neq 0} \propto \int_{\hat{G} L\left(n_{b} \mid n_{f}\right)} \mu_{H}(a) \mathcal{S} \operatorname{det}[a]^{\nu} e^{-\sqrt{\frac{\alpha}{2}} \operatorname{Str}\left[M \cdot a+M \cdot a^{-1}\right]+S t r\left[B a B a^{-1}\right]}$

Conclusion

■ We have proved the equivalence of the spectral properties of the $N \rightarrow \infty$ limit of χ-RMT and the $\varepsilon-\chi$ PT. This equivalence holds for any correlation function and for arbitrary chemical potential (zero,real barionic,immaginary isospin or arbitrary complex).

- super-bosonisation theorem (express integrals over $U(n), G l(n) / U(n)$ and $\hat{G l}\left(n_{b} \mid n_{f}\right)$ in terms of integrals of vectors or supervectors and viceversa)

Outline of the proof of the theorem

$$
\int d^{N} \psi \psi^{\dagger} f\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}\right)=
$$

Outline of the proof of the theorem

$$
\begin{aligned}
& \int d^{N} \psi \psi^{\dagger} f\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}\right)= \\
& =\int_{M} d a f(a) \int d^{N} \psi \psi^{\dagger} \delta_{M}\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}, a\right)
\end{aligned}
$$

Outline of the proof of the theorem

$$
\begin{aligned}
& \int d^{N} \psi \psi^{\dagger} f\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}\right)= \\
& =\int_{M} d a f(a) \int d^{N} \psi \psi^{\dagger} \delta_{M}\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}, a\right)
\end{aligned}
$$

M manifold of super-Hermitian matrices:

Outline of the proof of the theorem

$$
\begin{aligned}
& \int d^{N} \psi \psi^{\dagger} f\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}\right)= \\
& =\int_{M} d a f(a) \int d^{N} \psi \psi^{\dagger} \delta_{M}\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}, a\right)
\end{aligned}
$$

M manifold of super-Hermitian matrices:

$$
\int_{F=F^{\dagger}} d F e^{i F \cdot\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}-a\right)}
$$

Outline of the proof of the theorem

$$
\begin{aligned}
& \int d^{N} \psi \psi^{\dagger} f\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}\right)= \\
& =\int_{M} d a f(a) \int d^{N} \psi \psi^{\dagger} \delta_{M}\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}, a\right)
\end{aligned}
$$

M manifold of super-Hermitian matrices:

$$
\left(=\int_{F=F^{\dagger}} d F e^{i F \cdot\left(\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}-a\right)} e^{-\varepsilon S t r\left[\sum_{k} \psi_{k} \otimes \psi_{k}^{\dagger}\right]}\right.
$$

Outline of the proof of the theorem

$$
\begin{aligned}
F= & \left(\begin{array}{cc}
F_{1} & \Phi \\
\Phi^{\dagger} & F_{2}
\end{array}\right), a=\left(\begin{array}{cc}
a_{1} & \alpha \\
\alpha^{\dagger} & a_{2}
\end{array}\right) \\
& \int_{F=F^{\dagger}} d F \frac{\operatorname{Det}\left[F_{1}-i \varepsilon\right]^{-N}}{\operatorname{Det}\left[F_{2}-i \varepsilon-\Phi^{\dagger}\left(F_{1}-i \varepsilon\right)^{-1} \Phi\right]^{-N}} e^{-i F \cdot a}
\end{aligned}
$$

Outline of the proof of the theorem

$$
F=\left(\begin{array}{cc}
F_{1} & \Phi \\
\Phi^{\dagger} & F_{2}
\end{array}\right), a=\left(\begin{array}{cc}
a_{1} & \alpha \\
\alpha^{\dagger} & a_{2}
\end{array}\right)
$$

$$
\int_{F=F^{\dagger}} d F \frac{\operatorname{Det}\left[F_{1}-i \varepsilon\right]^{-N}}{\operatorname{Det}\left[F_{2}-i \varepsilon-\Phi^{\dagger}\left(F_{1}-i \varepsilon\right)^{-1} \Phi\right]^{-N}} e^{-i F \cdot a}
$$

poles in $\operatorname{Det}\left[F_{1}-i \varepsilon\right]=0, \Rightarrow$ analytic continuation $F_{1}=F_{1}^{\dagger} \rightarrow F_{1} \in U\left(n_{b}\right) ; \Theta\left(a_{1}\right)$

Outline of the proof of the theorem

$$
F=\left(\begin{array}{cc}
F_{1} & \Phi \\
\Phi^{\dagger} & F_{2}
\end{array}\right), a=\left(\begin{array}{cc}
a_{1} & \alpha \\
\alpha^{\dagger} & a_{2}
\end{array}\right)
$$

$$
\int_{F=F^{\dagger}} d F \frac{\operatorname{Det}\left[F_{1}-i \varepsilon\right]^{-N}}{\operatorname{Det}\left[F_{2}-i \varepsilon-\Phi^{\dagger}\left(F_{1}-i \varepsilon\right)^{-1} \Phi\right]^{-N}} e^{-i F \cdot a}
$$

poles in $\operatorname{Det}\left[F_{1}-i \varepsilon\right]=0, \Rightarrow$ analytic continuation $F_{1}=F_{1}^{\dagger} \rightarrow F_{1} \in U\left(n_{b}\right) ; \Theta\left(a_{1}\right)$
super-contour invariance in F_{2} integration

$$
F_{2} \rightarrow F_{2}-i \varepsilon-\Phi^{\dagger} \cdot F_{1}^{-1} \cdot \Phi
$$

Outline of the proof of the theorem

$$
F=\left(\begin{array}{cc}
F_{1} & \Phi \\
\Phi^{\dagger} & F_{2}
\end{array}\right), a=\left(\begin{array}{cc}
a_{1} & \alpha \\
\alpha^{\dagger} & a_{2}
\end{array}\right)
$$

$$
\int_{F=F^{\dagger}} d F \frac{\operatorname{Det}\left[F_{1}-i \varepsilon\right]^{-N}}{\operatorname{Det}\left[F_{2}-i \varepsilon-\Phi^{\dagger}\left(F_{1}-i \varepsilon\right)^{-1} \Phi\right]^{-N}} e^{-i F \cdot a}
$$

poles in $\operatorname{Det}\left[F_{1}-i \varepsilon\right]=0, \Rightarrow$ analytic continuation $F_{1}=F_{1}^{\dagger} \rightarrow F_{1} \in U\left(n_{b}\right) ; \Theta\left(a_{1}\right)$
super-contour invariance in F_{2} integration
$F_{2} \rightarrow F_{2}-i \varepsilon-\Phi^{\dagger} \cdot F_{1}^{-1} \cdot \Phi$
Φ, Φ^{\dagger} enter only in the exponential \Rightarrow gaussian integration

Outline of the proof of the theorem

$$
F=\left(\begin{array}{cc}
F_{1} & \Phi \\
\Phi^{\dagger} & F_{2}
\end{array}\right), a=\left(\begin{array}{cc}
a_{1} & \alpha \\
\alpha^{\dagger} & a_{2}
\end{array}\right)
$$

$$
\int_{F=F^{\dagger}} d F \frac{\operatorname{Det}\left[F_{1}-i \varepsilon\right]^{-N}}{\operatorname{Det}\left[F_{2}-i \varepsilon-\Phi^{\dagger}\left(F_{1}-i \varepsilon\right)^{-1} \Phi\right]^{-N}} e^{-i F \cdot a}
$$

poles in $\mathcal{D e t}\left[F_{1}-i \varepsilon\right]=0, \Rightarrow$ analytic continuation $F_{1}=F_{1}^{\dagger} \rightarrow F_{1} \in U\left(n_{b}\right) ; \Theta\left(a_{1}\right)$
super-contour invariance in F_{2} integration
$F_{2} \rightarrow F_{2}-i \varepsilon-\Phi^{\dagger} \cdot F_{1}^{-1} \cdot \Phi$
Φ, Φ^{\dagger} enter only in the exponential \Rightarrow gaussian integration
F_{1}, F_{2} may be integratated like super analytic contination of standard integrals

Outline of the proof of the theorem

$$
\int_{a_{1}=a_{1}^{\dagger}} d a_{1} \Theta\left(a_{1}\right) \oint_{U\left(n_{f}\right)} d a_{2} e^{-\varepsilon S t r[a]} \int d \Theta d \Theta^{\dagger} \mathcal{S} d e t\left[\begin{array}{ll}
a_{1} & \alpha \\
\alpha^{\dagger} & a_{2}
\end{array}\right]^{N+n_{f}-n_{b}}
$$

Outline of the proof of the theorem

$\left(\int_{a_{1}=a_{1}^{\dagger}} d a_{1} \Theta\left(a_{1}\right) \oint_{U\left(n_{f}\right)} d a_{2} e^{-\varepsilon S \operatorname{Stra]}} \int d \Theta d \Theta^{\dagger} \mathcal{S} \operatorname{det}\left[\begin{array}{cc}a_{1} & \alpha \\ \alpha^{\dagger} & a_{2}\end{array}\right]^{N+n_{f}-n_{b}}\right.$
The integration manifold is $\hat{G} L\left(n_{b} \mid n_{f}\right)$, the measure is the flat one induced by the metric

$$
\operatorname{Str}[d a \cdot d a]
$$

Outline of the proof of the theorem

$\left(\int_{a_{1}=a_{1}^{\dagger}} d a_{1} \Theta\left(a_{1}\right) \oint_{U\left(n_{f}\right)} d a_{2} e^{-\varepsilon S t r[a]} \int d \Theta d \Theta^{\dagger} \mathcal{S} \operatorname{det}\left[\begin{array}{cc}a_{1} & \alpha \\ \alpha^{\dagger} & a_{2}\end{array}\right]^{N+n_{f}-n_{b}}\right.$
The integration manifold is $\hat{G L}\left(n_{b} \mid n_{f}\right)$, the measure is the flat one induced by the metric

$$
\operatorname{Str}[d a \cdot d a] \rightarrow \text { Haar Str }\left[a^{-1} d a \cdot a^{-1} d a\right]
$$

From the Berezinian of $d a \rightarrow a^{-1} d a$ arise a factor $B=\mathcal{S} \operatorname{det}[a]^{n_{f}-n_{b}}$

Outline of the proof of the theorem

$\left(\int_{a_{1}=a_{1}^{\dagger}} d a_{1} \Theta\left(a_{1}\right) \oint_{U\left(n_{f}\right)} d a_{2} e^{-\varepsilon S t r[a]} \int d \Theta d \Theta^{\dagger} \mathcal{S} \operatorname{det}\left[\begin{array}{cc}a_{1} & \alpha \\ \alpha^{\dagger} & a_{2}\end{array}\right]^{N+n_{f}-n_{b}}\right.$
The integration manifold is $\hat{G L}\left(n_{b} \mid n_{f}\right)$, the measure is the flat one induced by the metric

$$
\operatorname{Str}[d a \cdot d a] \rightarrow \text { Haar Str }\left[a^{-1} d a \cdot a^{-1} d a\right]
$$

From the Berezinian of $d a \rightarrow a^{-1} d a$ arise a factor

$$
B=\mathcal{S} \operatorname{det}[a]^{n_{f}-n_{b}}
$$

$$
\int_{G L\left(n_{b} \mid n_{f}\right)} \mu_{H}(a) e^{-\mu S t r[a]} \mathcal{S} \operatorname{det}[a]^{N}
$$

