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Outline _— :

* From numerical field maps to field representations suitable
for tracking. A short survey.
— Emphasis on 3D multipole field representation.

» Tools for integration of equations of motion and assessment
of dynamical effects of wigglers.

* Impact of wiggler nonlinearities on ILC damping ring lattices.
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Cylindrical or Cartesian coordinates for field \1 :
representation?

[BcrecLEy Lan] l.

The Cartesian way.

» Simple modeling of wigglers has a more natural representation
in Cartesian basis functions - e.g. Halbach’ approximation :

B, =- B, :—s n(k,x) sinh(k, y) coslk,z)
y

B, = B, cos(k,X) cosh(k, y) cos(k,z)
B, = - B, cos(k,x)sinh(k, y)sin(k,z) k,

* In general fields from actual devices are poorly represented by one
mode. Make this representation general by summing over all modes.

» Several coefficients in expansion have to be used for accurate
representation of actual fields.

* Note: for simulation of dynamics an analytic field representation is
preferable to interpolation of numerical field map on grid.
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Determine coefficients of field representation \1 "i‘

* One field component on boundary of 3D empty region determines
uniquely full magnetic field within that region.

* However, if mid-plane symmetry holds, knowledge of B, on a plane
parallel to (preferable) or on the mid-plane is sufficient.

« At least two ways to obtain coefficients for field representation:
— by Fourier transform
— by fitting
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Coefficients from FT Inversion eree) ‘

» Scalar potential solving Laplace equation: By1 ,/'/
Y =& c,, cos(nk,x)sin(¢k,z)cosh(k, y) |
/,n

with Kk, =2p/L,k,=2p/L,,
k2 =nPk? + 12K

’
L ke
: N L
By =d Cn,éky COS(nkXX)Si n(ﬁkZZ)Si nh (kyy) .
Z,n .

< ,’ |
LX
2 L,/2 2 L,/2
G =— CfX-— ¢¥ix sin(tk,z)cos(nk x)B& (x,y =L,)
L, . L, /2 L,. L,/2 ﬁ

*
|

Coefficients of field representation | Magnetic field data



If possible use field data far from midplane';ﬁ'.ﬂ ‘

B2 = g ¢ cos(nk,x)sin(¢k,z)
/Z,n

data
C

— (N
Cnﬁ

" coshlk,L,/2)«

Notice denominator grows with mode
numbers if L, does not vanish.

The larger L, the better.
recall kj =n’k; +(°k?

 FT method is fast.

« However, Fourier transforming in x in unnatural as fields are not
periodic. From F-series to F- integrals.

» Fields are usually not known over a large span of support L,.
For finite L, convergence in Fourier space is slow. A large
number of modes needed to get accuracy



-

Coefficients from fitting eree) ‘

Accuracy can be improved by regarding coefficients of Fourier
expansions as free parameters to be fitted against values

of numerical field map in selected points (or the entire 3D grid
— if available).

Method can be accurate.

Field data vs. fit for CESR wiggler
D. Sagan et al. found rms (D. Sagan et al., PAC03)
residual field error from e
fitting of the order of ~9 b s=0om
Gauss (~2 T peak field) for S BN - oo
CESR wigglers. 2153 AN =
For good results reliable Z 2 \
optimization routines are 21y ~
needed. 2150 S
Procedure can be time S R 'zo;,'m;m'gowsc
consuming.
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A case for representation of fields \1 A
In cylindrical coordinates \‘

» Using a field representation in terms of cylindrical basis functions
(i.e. 3D multipole expansion)

» Determine coefficients by Fourier transform.

« A few advantages:
— Faster and simpler than fitting.
— Accurate (natural periodicity in azimuthal coordinate).

— Uses language closer to familiar (2D) multipole field
representation for conventional magnets.
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Basic formulas rereen) :

« Scalar potential solving Laplace equation in cylindrical variables

Y =3 I, (tk,r )sin(tk,z)[b,,, sin(mj ) +a,,, cos(mi )]
ne A A A

modified Bessel function |skew components

normal components

» (normal) magnetic field components

B, =3 kb

m,?

B = é mby,, | (¢k,r ) cosmj )sin(¢k,2)

| (¢k,r)sin(mj )cos(tk,z)

| (¢k,r)sin(mj )sin(¢k,z)

z-m,/

B, aek

z-m,/



Alternate expression:
Introduce the generalized gradients

-

Frrereree |||‘

Expand modified Bessel function in power series in radial
variable; carry out sum over longitudinal modes:

ml

Y=a(1b,,
m,/

22 1(¢ + m)!

[2z](z) r 2/+m (mj )

Generalized gradients and 2|-derivatives

The C_[?1(2) can be arbitrary - Y will still satisfy Laplace equation

3 5
B, :g%l(z) - —r *CA(2) +1Tzr

aP2C ,(2)r -

a%c (2)r 2-

. dipole
‘Cl(2)+..%in( ) + e
%)

guadrupole

21 'CP(2)+.

/ sextupole

sin(a )+...(Sin« cos)
.



From magnetic field data on cylindrical surface ‘\1 ;
to the generalized gradients |

-~ B.(r =Rj,2=8 B,(R2)sn(m )

\m=1A Data on cylinder
2p

177, . : :
- B.(R2=—cl sn(m )B, (R] ,2)
Br 0 Fourier integral on f

1y
B - 7 e 2P
mp =7 Fze "B, (R 2)
J w 0  Fourier integral on z
m+k-1 B
CETI](](Z)_ é k@o m, p ~20ipz/1

2m Ip -¥ I w ﬂ Im(zppRll w)b
Generalized gradients and derivatives
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Smoothing properties of method reveem) ‘

LMk-1 e —

3 o] B |
Cr[]:(](Z) — 2m1m é Ikﬁgﬂ: 2p|pz/| w
p=-¥ w @ m:m’

Low pass filter

» Modified Bessel function grows exponentially for large
arguments.

» Term with Bessel function acts as a filter that dampens high
frequency components (possibly due to numerical random
noise) of magnetic field data.

« Caution: this natural filtering is going to make efficient use
of good numerical field data. It won't fix bad numerical data.
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From cylindrical back to Cartesian ... \1 ‘

» Fourier analysis is more naturally done using cylindrical coordinate
basis functions.

« Still, one may desire to have field expansions in Cartesian coordinate
basis functions.

» Conversion can be done between coefficients of two series. For a
purely normal field:

1 o .
C,,6,=- -1k b, K r
n,/ kj COSh(kyR) 2-0( ) z72ptl e 2p+l( z )

K,=2p/L,, k,=2p/L,, witharbitrarily fixed L,,L,
k2 =n2k2 + 022

» Our experience shows this is more accurate than working
all the way in Cartesian coordinates from the start.
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...and from Cartesian to cylindrical KW ‘

» One can also express coefficients of the series in cylindrical
coordinate basis in terms of those in the Cartesian basis series.

« Example: infinitely wide wiggler with one longitudinal harmonic

B, =0
B, = B, cogkz)cosh(ky)
B, = - B, sin(kz)sinh(ky)

* Generalized gradients:
m-1
2

C..(2) = B,cos(kz)k™* (2 1)n1 , for oddm; C_ =0 otherwise

m1

* Infinite spectrum of multipoles is present (dynamics is trivial in x
but not in y where there are linear and nonlinear effects)
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 Two examples of 3D multipole analysis:

— CESR 8-pole wiggler

— LBL design for NLC-MDR wiggler (one period)



Analysis of field map for CESR 8-pole wigglers cvees) ""'\

* Very nice numerical field Dipole field harmonic at R=2.6 cm
map available.

» Calculated using Opera, :

Mermaid (J. Crittenden et e _f\

al.,PACO03). & \f
« Courtesy of Rubin et al. B

from Cornell. -2

0.25 0.5 0.75 Z [m1] 125 1.5
n?AX|s Vertlcal Fleld

) :
0
?2 ) ]

025 05 075 1 25 15 1.75
zma m

ra

1.73

(4

C Tmnm

CESR 87Pole Wiggler

7-pole wiggler
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Accuracy of field representation (1) ereen) ‘

Error of Truncated 30 Multipole Expansion
« On surface of cylinder of < 00001
radius R=2.6 cm residual S o oomns "
from 3D multipole e H
representation truncated z . =
through 14-pole is £ _0.00005 g
1 Gauss or less. e .
—0.0001
. Wlthln Cyllnder fleld reSlduaI Error of Truncated of 30 Multipole Expansion
becomes smaller (as expected). £ oooo )
« Large errors at wiggler ends are i o.ooo0s -g:
due to discontinuous termination 3 0 [ttty £
qf field data. Th_ey can bg easily = _no0n0s g
fixed by extending fields in z T oo =
. . . = —-
making them periodic.
1] 0.25 0.5 073 1 125 15
z ()
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Accuracy of field representation (l1) e ‘

_

» Accuracy of field representation is an indicator of numerical quality of
the field map.

* Invariance of results against variations of selected radius of
cylindrical surface for data analysis is also a useful test.

on cylinder of radius R=2.6 cm on x-y plane
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CESR 8-pole wigglers: Field quality e \

dipole
field roll—off (mid—pole) sextupole

217 1} / ]
216 y=2.6 em « decapole <
2 o
215 § 0.001 ¢ ] §
= < L o
< 214 y=1.3 cm & Y| 1 glr._
mo213f e 4y @ 7 @
i v

212 u
- 0 1.x 1077} I
211 y=10 w
1107
-004  -002 i 0.02 0.04
X (m) 2 4 6 B 10 12 14 16

azimuthal harmonic no.

* Red bars: spectrum of multipole
field integrated over half a period

* Black bars: spectrum for
infinitely wide wiggler

» Ultimately the field quality is decided by the dynamical effects on the beam
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CESR 8-pole wigglers: generalized gradients F\W "i‘

[BcrecLEy Lan] l.
th i i -avi< fi . . .
4™ derivative of on-axis field Sextupole gradient and 2nd derivative
15 of on-axis field
B
% C(2)/4 vs 6Cy(2),
E’ 300 —— T r r r r L
S ks
~ v 20 13
0 100 B=
8 . ﬂ @
“E S
025 05 0.75 1 25 15 1.75 = e
Zman ?100 Vig
2200 @
Decapole gradient 2300

025 05 075 1€ #25 15 1.75
zmE m

1500

1000

'@ 500
o0
& 7500
21000
21500

In infinitely wide wiggler:

Cl?l(2)14 =6C,(2)

CESR 8?Pole Wiggler

025 0.5 075 25 1.5 1.75




Model for NLC-MDR wiggler (one period) N

BEREELLEY LAD

* A model of wiggler design for NLC damping
ring was developed at LBL (J. Corlett et al.,
LBL-CBP Tech. Note 199).

e Several 1-period 3D field maps with
increasing numerical quality have been
produced.

e This model was used in the past for the
NLC-MDR studies and in now being used in
some of the tracking for the ILC DR.

2 2 y? 85mm
; :
T on axis o
Figure 1. Electronsagmel wiggher, one perisd. . [ ] g
= )
* Main design parameters: & 0 é‘
BWO =215T 21 (9
zZ
l,=027m
?2
polegap =2cm . . ,
0 0.05 01
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NLC-MDR wiggler model: accuracy of field ’\I A
representation / numerical quality of field map

* Numerical quality of best field data available is still not very high but
improved from first field map produced. Still, it may be acceptable.

Peak error from field representation ~15 Gauss

Residual field error from field representation

T -r:m Tes
- “"-"f;:fr'{r'-"';a;
_ Jm;" iII‘IIPIH

lll]

.'.-.B,,, [Eauss]

i
s

il

:'.E,, [Gauss]
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NLC-MDR wiggler model: field quality )\1 ‘

Comparison between field roll-offs
NLC-MDR w-prototype CESR 8w
field roll? off m@?pole m field roll? off m@?pole m
2.234 ]
/m 2124 /ﬁm—n\
2232 13 B
: : § : : 2122 1 %
" e 12 ~ 212 ] §
) y? 4 mm g o " y? 4mm g
2228 A ] 2 2118 fbx-—"7 14
?10 ?5 0 5 10 ?0.01 ?0.005 0 0.005 0.01

X Mma N X mME B
1
0.001 1=
s B |
£ 1.2107 % <— Integrated multipole spectrum
=
1.2107° .
1.7 10712

2 4 6 8 10 12 14 16
azimuthal harmonic no.
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div B=0 as an additional indicator of numerical ’_\] 1
guality of field data

NLC-MDR w (worst case
CESR 8-pole w of produced field map)

Sralkd O, - Figld Dafa 20897 m Aealed D~ Fikng Finkd z=00 o
oo -5
. -1
_ Midpole T »
a
E o a5
-t
noE -5
-i
13
W e _‘
ween poles
1 \ : -
Seabed Dfv — P Daka =043 m I ; \} Zeabnd ivurgies - Fisid Dutx, =100 m I
148 Dooa -5
onz 1 .
'E-. 20 1] =23
_l;-:n:- E s ; ﬁ .
. i a8 Z oo : %
i d = -
e ;

i1 g -4.8 = A5
E -

; NOT GOOD!! :
nm 0ER 0B W Ky wE oo 0ok DS o
mi & | W ) o




Integration of Eq.’s of motion thru wigglers \1 ‘

* To do tracking: integrate equation of motion

— for individual particles through a desired order in time step (possibly using
a symplectic integrator).

— for the transfer map through a given order in the transverse variables.
Transfer map is expressed in terms of the deviation variables from
reference orbit (our choice).

« At LBL we’'ve been using two sets of tools

— Merlin/Cosy (Cosy for calculation transfer map in Taylor; Merlin for
tracking and motion analysis). Field representation in Cartesian variables
In equations of motion obtained by conversion from coefficients of the
series cylindrical representation. Symplectic/nonsymplectic tracking.

— MaryLie - for both Lie map production and symplectic tracking using
method of generating functions (3" order in transverse variables).
Cylindrical representation of fields is used at input.
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Example — Computation of transfer functions \1 A
for CESR 8-pole wigglers

Reference Orbit Horizontal plane kicks
Reference Orhit 01
00015 | . y?2cm
0.001 ] g 0.05
' =] 1 &
0.0005 = € 0 y?0 o
0 S g O
\/ i 2005
-0.0005 o
2]
-0.001 f s w
o5k ?0.02 ?70.01 ) (:n. ‘ .01 0.02
0 0.25 0.s 073 1 1.25 1.4
zm Vertical plane kicks
4
N g x?0
_ _ \NE 1 3
» Transfer map for wiggler is calculated E o o
relative to the reference orbit. gt O
?2
. : . 23
» Calculation done with MaryLie w
?0.02 ?0.01 0 .01 0.02

y mma m



Cross-validation of numerical tools
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¥ map P MMap
MaryLie vs. i . B o
Merlin/Cosy. ¥4 j .
Comparison of 56 ; -6
transfer maps i 7 e ; o i
(Taylor form) for o 5 10 15 ;25 30 15 m 1m =
. . Mcnomial Indes Mancmial indax
wiggler period
Maps through 3rd ? = J e :
order. il oy PP . .
. 5 =
NLC MDR wiggler g g -
model. ge 2o
—B MaryLie3 .0 _8 MaryLied O
COEY * COSY
i} 1 i5 20 10 15 20
Monemial [ndes Manamial Index




Simplified kicks through one wiggler period \1 A
In terms of generalized gradients

[BcrecLEy Lan] l.

 Assume kick approximation (X,Y=const) through wiggler period.
Fields with mid-plane symmetry.
¢ Momentum kick in vertical plane through 3 order in Y,
1st-order in amplitude of reference orbit:
1 :
AB, (X' (2),Y,2)- £ B (X' (2),Y,
Dp, » Brhogi (X (2.Y.2)- 2B,(X (2).Y, D)}z
sextupole
Dp, =Y(Dpy ), +Y*(Dpy )5 feed-down dipole
. J ’
1 %, 3 .
(09.),= g 082X (O, + 311212 - oﬂzx (DCD - g 3 Gelorcol
) A
(Bp, ) =- c[ ](z)

Dipole field component

is always focusing. Use
decapole / / d’x’ 1

- C/(z
feed-down sextupole dz > Brho 2(2)

feed-down dipole
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Purely horizontal kicks oreen) ‘

IW
» 3" order horizontal kick Dp, »ﬁ OB, (X' (2)+ X,0,2)dz
0
Dp, = X (Dpy ), + X*(Dpy )

__ilf ‘ 1 Q:_ilﬁ ‘ _;Iﬁ W,
(0. =+ g 02X AT, CH@3=- g 52X (0D g0 (@)

’

Always focusing

I S a0 1 cia )0
(Br)s = - 5 02X (@I520C,(2)- € @)+ 5 ¢ @2

« Consistency check: kick vanishes (order by order) when C_(2) is from
infinitely wide wiggler.

» Decapole feed-down term to 39 order kick has the radial dependency
and azimuthal symmetry of kick from a real octupole magnet.

— thisis general e.g. 14-pole feed-down to 5™ order kick has the azimuthal & radial kick
from a duodecapole, etc.
— If these terms are dominant in kick one can hope to compensate wiggler

nonlinearities locally with standard multipole magnets (effectively, this is what was
done in the SPEAR BL11 wiggler insertions).

* Notice that a wiggler consisting of purely dipole field C;(2= C;(2)=...0
would have linear focusing in both x and y.



Tracking through ILC-DR lattices \1 ‘

[BcrecLEy Lan] l.

» DA aperture is an issue with ILC-DR lattices. Dominant nonlinearities
are from chromatic sextupoles.

» Wiggler nonlinearities appear to play a smaller role but should be kept
under control.

* Impact of wiggler nonlinearities on wiggler design. Two examples
considered:
— 6Km ILC-DR [lattice design by FNAL team (A. Xiao (July 04), Mishra et al. (Oct.
04)], with NLC-MDR LBL wiggler prototype. Wiggler ends modeled using bends.
Impact of wigglers is modest.

— TESLA-DR dog-bone lattice with TESLA wiggler prototype. (Wiggler ends also
modeled using bends). Field map courtesy of W. Decking.
Impact of wiggler is substantial.



6 Km FNAL DR (nonlinear wigglers)
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FEFEFNT |

Frequency map in x/y plane Frequency map in tune space
EA » %—chaotic g § N
004 =435 m -; motlon o7 ___\-,_-"J\ . :r‘ . _‘{.___-..---.-_
= T~ Wi,
R i S -3 L e iy T
=, 003 | | l "'=.| 4 .?-._,_4_ . m‘
-‘.E,..- 5 g ' 5 ol | L[| PR L 1 2'.!'_1 ..... '=;f|
> 002 T £ g uE:
:. f}"‘._-“. \\ E% i d 5
001 it . regular .
L s motion
EHEp IR i
-0.02 0.1 a 001 0.0z o b3 o4 Eli 08 o k]
X (m) Ve

2ry=1ym

J O o

ILCSmallvio_6; a=0
3

R - R I+ R

(=]

Frequency maps measure diffusion in tune;
allow identification of resonances that may
be affecting the DA.
* Bluer orbits have more regular

motion.
» Reddish orbits are chaotic.

- Short term tracking done with MaryLie3.0
- Error-free lattice




6 Km FNAL DR

(NL vs. linear wigglers)

-

On-momentum wiggler
nonlinearities cause

rerreer| o

Nonlinear wigglers

0.4 ; s ]
noticeable but modest - : B e :
but DA reduction. E _ =N b 3

- 2 b P [ o ]

0o ,"_' i LJ_E : |

0.0% I!j.r i 3 ¥

: |"‘ f ) .':. .'I .-g 0z : [T:]
D2 .01 ¥ oo a2 "
Xxi(m)
Anharmonicities are within Linear wigglers
10-20 %
Bom5 s o i,
Linear* | NL* i b
oo M ,
T -3 iy =
=, 0.03 { 5 -
v /19,|-3977. |-3434. £ af 2 | .
>0 il 5 i
‘ﬂvy/'ﬂ\]y 2593. | 3136 i \ 8 s )

0.01 ;“.!1:-:' E \ u

ﬂvX/ﬂJy -6644. |-6379. L ml b :
BT ;
*in units of m1 0.02 .01 0 001 0.02 !




TESLA 17km DR _ )

BEREELLEY LAD

Linear wigglers Nonlinear wigglers

10 o

38. [ | Bed 3Sx

¥ [mm]

T 5 10 -5 0. 5 10 15 a0 =206 =10 © 10 20 3
* |

IJ:l ¥ [ =
A

2| o>
Y 41 gt
',;".;a..,é?ﬁ 2

N =

R A

!

A

NN

W o,

\ -h\-\""-"‘:l"I o "'liflf_r/'l i
L) a8

Wiggler map calculation/tracking done with Cosy/Merlin  betax=15.4 m; betay=8.6 m
by A. Wolski Atinj.:s, =3.9 mm; s, =3 mm
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DA and transfer functions: \1 A
NLC MDR vs. TESLA DR wiggler \‘

Nonlinearities for model of
TESLA wigglers are
considerably larger than
those from the NLC wiggler
model.

Relative strong feed-down
from decapole field
component present in TESLA
wiggler.

Transfer functions for 1 period

Nm 60t
40 ¢

NE 20f NLC?w
~ S—

TESLA ?w,

0

g?_f ?20}
240t
?60 t

?0.02

?0.01 0 :;0.0l 0.02

NLC?w

TESLA?w

240 |

?0.02

?0.01 0 :;0.0l 0.02

y mam
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Conclusions rereen) :

* A 3D multipole (cylindrical representation) of fields with coefficients
obtained by FT is fast to compute, simple and accurate.

» Cross-validated set of tools for calculation of dynamics including
linear and nonlinear effects. It would be desirable to extend
validations against codes from other groups.

» Results from tracking of ILC lattices confirms that field quality in
wigglers does have an impact on dynamic aperture. Wiggler design
should be tuned to tame nonlinearities.



