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wiggler & beam parameters

photon distributions

e-cloud build-up

e-cloud instabilities



parameters



0.65 m0.20 m0.40 mλwwiggler period

9.2 keV2.19 MeV20 MeVU0E-loss/turn

beam size y

beam size x

beta y

beta x

bending field

wiggler ρ

wiggler length

circumference

energy

parameter

0.08 mm3.6 µm5 µmσy

1.5 mm 22.8 µm93 µmσx

5 m7.0 m10. 5 mβyw

5 m4.0 m10.5 mβxw

1.7 T 1.76 T1.63 TBw

1.0 m4.58 m9.9 mρw

8 m 160 m540 mLw-tot

97.69 m357 m17 kmC

0.510 GeV2.424 GeV5 GeVE

DAFNECLICTESLA/ILCsymbol



<0.03 m-10.3 m-10.1 m-1dNe/dzphoto-el. rate /e+

10 mm9 mm9 mmhyhalf height@wigl.

photon rate / e+

beam line density

half width @ wigl.

bunch spacing

bunch population

parameter

10.5 m-110.9 m-110.4 m-1dNγ/dz

2.6x1010 m-12.1x1010 m-13.3x109 m-1λb

60 mm16 mm16 mmhx

0.8 m0.2 m6 mC

2.1x10104.2x1092.0x1010Nb

DAFNECLICTESLA/ILCsymb.

simulated incident photon 
flux by simulation
+ assumed photoemission
yield Yeff=0.1

0.003 m-1

specified
by DAFNE



TESLA or CLIC wiggler chamber
hx=16 mm, hy=9 mm (half apertures) 
half height of antechamber slot = 3 mm

photons incident at |y|<3 mm are absorbed by antechamber

model of wiggler vacuum chamber



Monte-Carlo simulations of incident 
photon distribution



wiggler
arc

straight 
section

total photon flux incident on beam-pipe wall assuming 
complete γ absorption at |y|<3 mm by antechamber,

and 80% photon reflectivity of other surfaces

injection parameters

wiggler

arc

TESLA/ILC damping ring CLIC damping ring
wiggler ~ 1018 /m/s wiggler ~ 3x1018 /m/s

PHOTON code



wiggler
arc

straight 
section

photons per passing e+ incident per metre beam-pipe wall 
assuming complete γ absorption at |y|<3 mm by antechamber,

and 80% photon reflectivity of other surfaces

injection parameters

wiggler

arc

TESLA/ILC damping ring CLIC damping ring
wiggler ~ 1 wiggler ~ 3

PHOTON code



wiggler
arc

straight 
section

average energy of photons  incident on beam-pipe wall 
assuming complete γ absorption at |y|<3 mm by antechamber,

and 80% photon reflectivity of other surfaces

injection parameters

wiggler

arc

TESLA/ILC damping ring CLIC damping ring
wiggler ~ 4 keV wiggler ~ 2.2 keV

PHOTON code



wiggler
arc

straight 
section

heat load per metre from γ’s incident on beam-pipe wall 
assuming complete γ absorption at |y|<3 mm by antechamber,

and 80% photon reflectivity of other surfaces

injection parameters

wiggler

arc

TESLA/ILC damping ring CLIC damping ring
wiggler ~ 1 kW/m wiggler ~ 9 kW/m

PHOTON code



simulations of electron-cloud build up



e- line density central volume density

assumed dNe-/dz=0.2 photo-electrons per positron 
per meter, 6 different values of δmax

ECLOUD code

constant magnetic dipole field = peak wiggler field 
TESLA/ILC

average
beam
line 
density

λe=1010 m-1, ρe~5x1012 m-3
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harmonic expansion in cartesian coordinates (Halbach):

expansion in cylindrical coordinates (Venturini):

presently use only the terms n=m=1

more realistic wiggler field models



e- line density central volume density

assumed dNe-/dz=0.2 photo-electrons per positron 
per meter, 6 different values of δmax

field expansion in cylindrical coordinates 
TESLA/ILC

λe=1010 m-1, ρe~5x1012 m-3
ECLOUD code



e- line density central volume density

assumed dNe-/dz=0.2 photo-electrons per positron 
per meter, 6 different values of δmax

field expansion in cartesian coordinates 
TESLA/ILC

λe=1010 m-1, ρe~5x1012 m-3
ECLOUD code



e- line density TESLA/ILC

comparison of three field models ECLOUD code



TESLA/ILC

comparison of three field models 

central e- volume density

ECLOUD code



constant magnetic dipole field = peak wiggler field 

e- line density central volume density

assumed dNe-/dz=0.11 photo-electrons 
per positron per meter, 
6 different values of δmax

CLIC

λe=1010 m-1, ρe~6x1014 m-3

e- trapped inside
the beam

ECLOUD code



e- line density central volume density

assumed dNe-/dz=0.11 photo-electrons 
per positron per meter, 
6 different values of δmax

field expansion in cartesian coordinates 
CLIC

λe=1010 m-1, ρe~2x1013 m-3

most e- outside 
the beam, slow
inward migration

ECLOUD code

average
beam
line 
density



next step: include higher-order terms in CLIC wiggler field –

Fourier-transform radial field on cylinder surface computed 
by MERMAID code for CLIC hybrid wiggler design  (P. Vobly) 

to fit field expansion coefficients à la M. Venturini (M. Korostelev)
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simulations of electron-cloud single-bunch
instabilities



TESLA/ILC

emittance growth for various e- densities in wiggler only

threshold density for weak instability ρw~2x1012 m-3

HEADTAIL 
code



CLIC

emittance growth for various e- densities along the ring

threshold density for weak instability ρring~1x1012 m-3

HEADTAIL 
code



DAFNE observations
• e+ current limited to 1.2 A in collision by strong 

instability (~10 µs rise time); in previous years reached 
2.5 A

• large positive tune shift with current in e+ ring, not 
seen in e- ring

• wound solenoids in field-free sections w/o any effect
• main change for 2004 was wiggler field modification; 

suspicion that e- are created and trapped by the 
wiggler field

• instability sensitive to orbit in wiggler (few mm)
• instability depends on bunch current (not total current)
• instability strongly increases along the train 
• rise time is faster than the synchrotron period
• instability sensitive to injection conditions
• instability threshold scales w. transverse emittance

from discussions
with P. Raimondi
and M. Zobov



grow-damp measurement of transverse e+ instability 

Bunches at the train end:75, 80, 85,90

90 consecutive bunches 
+ 20 bucket gap

beam current = 500 mA

single- or multi-bunch
instability?

DAFNE

A. Drago
M. Zobov
C. Vaccarezza



model of DAFNE wiggler field in ECLOUD simulations:

magnetic field (Bx, By, Bz) inside the wiggler as a function 
of x,y,z coordinates is obtained from a bi-cubic fit of the 
measured 2-dimensional field-map data By (x,y=0,z); 
field components Bx and Bz are approximated by 
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peak field ~1.7 T, period ~65 cm C. Vaccarezza



measured By By from bi-cubic spline fit

Bz from spline fit Bx from spline fit

3 curves refer to x = -7, 0, +7 cm

DAFNE
wiggler

field
after

modification



e- line density DAFNE

parameters: 1.6 m spacing, Nb=3.5x1010, 49 bunches + 11 b. gap, δmax=1.4,
dNγ/dz=0.00051 m-1 with 20% photon reflectivity & cos2 φ distribution

average
beam
line 
density

1st turn 2nd turn

ECLOUD code



parameters: 1.6 m spacing, Nb=5.0x1010, 49 bunches + 11 b. gap, δmax=1.4,
dNγ/dz=0.00051 m-1 with 20% photon reflectivity & cos2 φ distribution

e- x-y distribution DAFNE

ECLOUD 
code



multibunch wake field W [m-2] is computed by introducing bunch 
offset ∆x & recording electric field E field at subsequent bunches:
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coupled-bunch e-cloud instability

instability rise time:
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single-bunch e-cloud instability

2 Q’x,ychromaticity

5 m βxx beta
5 mβyy beta

4x10-4∆p/prms momentum spread
80 kVVrfrf voltage
0.0083Qssynchrotron tune
0.023αmomentum compaction

0.08 mmσyrms y size
1.5 mmσxrms x size
17.2 cmσzrms bunch length
2.1x1010Nbbunch population
valuesymbolvariable

DAFNE

HEADTAIL 
code



time (s)

vertical emittance vs. time DAFNE

HEADTAIL 
code

1012 m-3

1011 m-3

different e- cloud densities

5x1011 m-3



conclusions
Ø significant fraction of photons not absorbed by wiggler 

antechamber
Ø together with high primary photon flux, this yields a large 

rate of primary photo-electrons
Ø in consequence, simulated e-cloud density for wiggler  

much higher than for arcs and straights
Ø for CLIC a more realistic wiggler field reduces the e-cloud 

ρ near beam; but for TESLA ρ identical to uniform field
Ø e-cloud in the wiggler likely causes single- &  multi-bunch

e-cloud instabilities; e-cloud might be responsible for 
current limitation in DAFNE  e+ ring

Ø possible countermeasures: clearing electrodes, grooved 
surfaces (?), photon absorbers/radiation masks with 
low reflectivity & low photoemission yield

Ø more precise field models in future simulations
Ø e-cloud effects to be considered in wiggler design



thank you for your attention!


