Electron Cloud in Wigglers

considering DAFNE, ILC, and CLIC

Frank Zimmermann,

Giulia Bellodi, Elena Benedetto, Hans Braun, Roberto Cimino, Maxim Korostelev, Kazuhito Ohmi, Mauro Pivi, Daniel Schulte, Cristina Vaccarezza, Rainer Wanzenberg, Mikhail Zobov wiggler & beam parameters photon distributions

e-cloud build-up

e-cloud instabilities

parameters

parameter	symbol	TESLA/ILC	CLIC	DAFNE
energy	E	5 GeV	2.424 GeV	0.510 GeV
circumference	С	17 km	357 m	97.69 m
wiggler length	L _{w-tot}	540 m	160 m	8 m
E-loss/turn	U_0	20 MeV	2.19 MeV	9.2 keV
wiggler p	ρ _w	9.9 m	4.58 m	1.0 m
bending field	B _w	1.63 T	1.76 T	1.7 T
wiggler period	λ_w	0.40 m	0.20 m	0.65 m
beta x	β _{xw}	10.5 m	4.0 m	5 m
beta y	β _{yw}	10. 5 m	7.0 m	5 m
beam size x	σ	93 µm	22.8 µm	1.5 mm
beam size y	σ _y	5 μm	3.6 µm	0.08 mm

parameter	symb.	TESLA/ILC	CLIC	DAFNE			
bunch population	N _b	2.0x10 ¹⁰	4.2x10 ⁹	2.1x10 ¹⁰			
bunch spacing	С	6 m	0.2 m	0.8 m			
half width @ wigl.	hx	16 mm	16 mm	60 mm			
half height@wigl.	hy	9 mm	9 mm	10 mm			
beam line density	λ_{b}	3.3x10 ⁹ m ⁻¹	2.1x10 ¹⁰ m ⁻¹	2.6x10 ¹⁰ m ⁻¹			
photon rate / e+	dN _γ /dz	10.4 m ⁻¹	10.9 m ⁻¹	10.5 m ⁻¹			
photo-el. rate /e+	dN _e /dz	0.1 m ⁻¹	0.3 m ⁻¹	<0.03 m ⁻¹			
simulated incident photon flux by simulation 0.003 m^{-1} + assumed photoemission specified yield Y _{eff} =0.1 by DAFNE							

model of wiggler vacuum chamber

TESLA or CLIC wiggler chamber $h_x=16 \text{ mm}, h_y=9 \text{ mm}$ (half apertures) half height of antechamber slot = 3 mm

photons incident at |y|<3 mm are absorbed by antechamber

Monte-Carlo simulations of incident photon distribution

total photon flux incident on beam-pipe wall assuming complete γ absorption at |y| < 3 mm by antechamber, and 80% photon reflectivity of other surfaces

TESLA/ILC damping ring wiggler ~ 10¹⁸ /m/s

CLIC damping ring wiggler ~ 3x10¹⁸ /m/s

injection parameters

photons per passing e+ incident per metre beam-pipe wall assuming complete γ absorption at |y|<3 mm by antechamber, and 80% photon reflectivity of other surfaces</pre>

TESLA/ILC damping ring wiggler ~ 1 CLIC damping ring

wiggler ~ 3

injection parameters

average energy of photons incident on beam-pipe wall assuming complete γ absorption at |y| < 3 mm by antechamber, and 80% photon reflectivity of other surfaces

TESLA/ILC damping ring wiggler ~ 4 keV CLIC damping ring wiggler ~ 2.2 keV

injection parameters

heat load per metre from g's incident on beam-pipe wall assuming complete γ absorption at |y| < 3 mm by antechamber, and 80% photon reflectivity of other surfaces

TESLA/ILC damping ring wiggler ~ 1 kW/m

CLIC damping ring wiggler ~ 9 kW/m

injection parameters

simulations of electron-cloud build up

assumed dN_e/dz=0.2 photo-electrons per positron per meter, 6 different values of δ_{max}

$$\lambda_e = 10^{10} \text{ m}^{-1}$$
, $\rho_e \sim 5 \times 10^{12} \text{ m}^{-3}$

more realistic wiggler field models

harmonic expansion in cartesian coordinates (Halbach):

$$B_{y} = B_{0} \cosh\left(\frac{2p}{l}y\right) \cos\left(\frac{2p}{l}z\right), B_{z} = B_{0} \sinh\left(\frac{2p}{l}y\right) \sin\left(\frac{2p}{l}z\right)$$

expansion in cylindrical coordinates (Venturini):

$$B_{\mathbf{r}} = \sum c_{mn} I'_{m} (nk_{z}\mathbf{r}) \sin(m\mathbf{f}) \cos(nk_{z}z)$$

$$B_{\mathbf{f}} = \sum c_{mn} \frac{m}{nk_{z}\mathbf{r}} I_{m} (nk_{z}\mathbf{r}) \cos(m\mathbf{f}) \cos(nk_{z}z)$$

$$B_{z} = -\sum c_{mn} I_{m} (nk_{z}\mathbf{r}) \sin(m\mathbf{f}) \sin(nk_{z}z)$$

presently use only the terms n=m=1

field expansion in cylindrical coordinates

assumed dN_e/dz=0.2 photo-electrons per positron per meter, 6 different values of δ_{max}

$$\lambda_e = 10^{10} \, \text{m}^{-1}, \, \rho_e \sim 5 \times 10^{12} \, \text{m}^{-3}$$

field expansion in cartesian coordinates TESLA/ILC

assumed dN_e/dz=0.2 photo-electrons per positron per meter, 6 different values of δ_{max}

$$\lambda_e = 10^{10} \,\mathrm{m}^{-1}, \,\rho_e \sim 5 \times 10^{12} \,\mathrm{m}^{-3}$$

comparison of three field models

TESLA/ILC

comparison of three field models

field expansion in cartesian coordinates

CLIC

next step: include higher-order terms in CLIC wiggler field-

Fourier-transform radial field on cylinder surface computed by MERMAID code for CLIC hybrid wiggler design (P. Vobly)

$$B_{r}(r = R, f, z) = \sum_{m=0}^{\infty} B_{m}(R, z) \sin(mf)$$
$$b_{m,p} = \frac{\mathbf{l}_{w}}{2\mathbf{p}p} \frac{\widetilde{B}_{m,p}}{I_{m}'(2\mathbf{p}pR/\mathbf{l}_{w})}$$
$$\widetilde{B}_{m,p} = \frac{1}{\mathbf{l}_{w}} \int_{0}^{I_{w}} dz e^{-i2\mathbf{p}pz/\mathbf{l}_{w}} B_{m}(R, z)$$

to fit field expansion coefficients à la M. Venturini (M. Korostelev)

$$\vec{B} = \vec{\nabla} \cdot \mathbf{y}$$
 scalar potentia
$$\mathbf{y} = \sum_{m=0}^{\infty} \sum_{p=-\infty}^{\infty} e^{2\mathbf{p}ipz/l_w} I_m \left(\frac{2\mathbf{p}p}{l_w}r\right) b_{m,p} \sin(m\mathbf{f})$$

simulations of electron-cloud single-bunch instabilities

emittance growth for various e- densities in wiggler only $\epsilon_{y}[m]$ TESLA/ILC

threshold density for weak instability $\rho_w \sim 2x10^{12} \text{ m}^{-3}$

emittance growth for various e- densities along the ring ${}_{\epsilon_v[m]}$ CLIC

threshold density for weak instability ρ_{ring} ~1x10¹² m⁻³

DAFNE observations

from discussions with P. Raimondi and M. Zobov

- e+ current limited to 1.2 A in collision by strong instability (~10 µs rise time); in previous years reached 2.5 A
- large positive tune shift with current in e+ ring, not seen in e- ring
- wound solenoids in field-free sections w/o any effect
- main change for 2004 was wiggler field modification; suspicion that e- are created and trapped by the wiggler field
- instability sensitive to orbit in wiggler (few mm)
- instability depends on bunch current (not total current)
- instability strongly increases along the train
- rise time is faster than the synchrotron period
- instability sensitive to injection conditions
- instability threshold scales w. transverse emittance

grow-damp measurement of transverse e+ instability

DAFNE

90 consecutive bunches + 20 bucket gap

beam current = 500 mA

single- or multi-bunch instability?

A. Drago M. Zobov C. Vaccarezza

Bunches at the train end:75, 80, 85,90

model of DAFNE wiggler field in ECLOUD simulations:

magnetic field (B_x , B_y , B_z) inside the wiggler as a function of x,y,z coordinates is obtained from a bi-cubic fit of the measured 2-dimensional field-map data $B_y(x,y=0,z)$; field components B_x and B_z are approximated by

$$B_{x} = \frac{\partial B_{y}(x, y = 0, z)}{\partial x} y$$

$$B_{z} = \frac{\partial B_{y}(x, y = 0, z)}{\partial z} y$$

$$B_{y}(x, y, z) = B_{y}(x, y = 0, z) - \frac{y^{2}}{2} \left(\frac{\partial^{2} B_{y}(x, y = 0, z)}{\partial x^{2}} + \frac{\partial^{2} B_{y}(x, y = 0, z)}{\partial z^{2}} \right)$$

consistent with Maxwell's equations

 $\vec{\nabla} \times \vec{B} = 0, \qquad \vec{\nabla} \cdot \vec{B} = 0$

peak field ~1.7 T, period ~65 cm

C. Vaccarezza

parameters: 1.6 m spacing, N_b=3.5x10¹⁰, 49 bunches + 11 b. gap, δ_{max} =1.4, dN_y/dz=0.00051 m⁻¹ with 20% photon reflectivity & cos² ϕ distribution

e- x-y distribution

parameters: 1.6 m spacing, N_b=5.0x10¹⁰, 49 bunches + 11 b. gap, δ_{max} =1.4, dN_y/dz=0.00051 m⁻¹ with 20% photon reflectivity & cos² ϕ distribution

coupled-bunch e-cloud instability

multibunch wake field W [m⁻²] is computed by introducing bunch offset Δx & recording electric field E field at subsequent bunches:

$$W = \frac{1}{r_e} \left(\frac{eE}{m_e} \right) L_w \frac{1}{N_b \Delta x} \frac{1}{c^2}$$
$$\approx 6 \times 10^{-10} \text{ s}^2 \text{m}^{-3} \left(\frac{eE}{m_e} \right)$$

(numerical value for offset $\Delta x=2.5$ mm, $N_{\rm b}=2.1\times10^{10}$, $L_{\rm w}=8$ m) instability rise time:

$$\boldsymbol{t} \approx \frac{2\boldsymbol{g}\boldsymbol{C}\boldsymbol{w}_{\boldsymbol{b}}}{N_{\boldsymbol{b}}r_{\boldsymbol{p}}c^{2}W(L_{sep})} \approx 3.7\frac{\mathrm{s}}{\mathrm{m}^{2}}\frac{1}{W(L_{sep})}$$

ECLOUD code

single-bunch e-cloud instability

variable	symbol	value
bunch population	N _b	2.1x10 ¹⁰
rms bunch length	σ _z	17.2 cm
rms x size	σ_{x}	1.5 mm
rms y size	σ_{v}	0.08 mm
x beta	β_{x}	5 m
y beta	$\beta_{\rm V}$	5 m
chromaticity	Q' _{x,y}	2
momentum compaction	α	0.023
synchrotron tune	Q _s	0.0083
rf voltage	V _{rf}	80 kV
rms momentum spread	∆p/p	4x10 ⁻⁴

HEADTAIL code

vertical emittance vs. time

conclusions

- significant fraction of photons not absorbed by wiggler antechamber
- together with high primary photon flux, this yields a large rate of primary photo-electrons
- in consequence, simulated e-cloud density for wiggler much higher than for arcs and straights
- For CLIC a more realistic wiggler field reduces the e-cloud ρ near beam; but for TESLA ρ identical to uniform field
- e-cloud in the wiggler likely causes single- & multi-bunch e-cloud instabilities; e-cloud might be responsible for current limitation in DAFNE e+ ring
- possible countermeasures: clearing electrodes, grooved surfaces (?), photon absorbers/radiation masks with low reflectivity & low photoemission yield
- more precise field models in future simulations

e-cloud effects to be considered in wiggler design

thank you for your attention!