Modeling and Simulation for CESR-c & ILC Wigglers

Jeremy Urban LEPP, Cornell University Advisor: Gerry Dugan WIGGLER 2005 Mini-Workshop February 22nd, 2005

CESR-c Wiggler Design

- Energy = 1.88 GeV
- Superferric
- 8-Pole Wiggler
- Length = 1.3 m
- Peak Field = 2.1 T

Horizontal Uniformity = 90 mm

- Gap Height = 76 mm
- Pole Width = 238 mm
- Realistic End Poles

[1] D. Sagan, J. A. Crittenden, D. Rubin, E. Forest, *A Field Model for Wigglers and Undulators*, PAC 2003

BMAD Tracking Methods
 Hamiltonian in Paraxial Approximation:
 Symplectic Inetgration² To Trock (250 store)
 To Track (250 steps) To Generate Taylor Map (3rd order) Runge-Kutta through Field Table
[2] Y. Wu, E. Forest, D. S. Robin, H. Nishimura, A. Wolski, V. N. Litvinenko, Symplectic Models for General Insetion Devices, PAC 2001

Simulation of CESR

Dynamic Aperture in CESR-c $\Delta p/p = 0\%, 0.3\%, 0.6\%$ $Q_x = 0.518, Q_y = 0.584, Q_z = -0.089$ 0.6 Dynamic Aperture, $\Delta P/P = 0.0\%$ $\Delta P/P = 0.3\%$ $\Delta P/P = 0.6\%$ 0.5Physical Aperture, $\Delta P/P = 0.0\%$ $\Delta P/P = 0.3\%$ $\Delta P/P = 0.6\%$ \mathbf{X} Vertical Position [mm] 36 0.40.30.20.10 -4 -3 -2 -1 Ω 2 3 4 Horizontal Position [mm]

Simulation of CESR

Horizontal Tune Shift vs. Tune in CESR-c $Q_x = 0.53$, $Q_y = 0.59$, $Q_z = -0.089$

Page 9

ILC Modeling

 Using 132 terms, differences with field table are less than 1 G on-axis and a few G at large amplitudes.

ILC Transfer Functions

Page 11

In the Dogbone Damping Ring

- Frequency Map Analysis
 - Intensity = Log (_Q_x)
- Dynamic Aperture
 - Reference Curve = 3*Injected Positron Beam Size
- Tune Scan
 - Intensity = Area Enclosed By Dynamic Aperture
- On-Momentum
- Working Point: $Q_x = 0.31$, $Q_y = 0.18$
- Match Tune with Matrix Transformation
- Sextupoles Untouched in Dogbone Lattice
- Tracking using 3rd order Taylor Map

In Progress...

Tune Scan

- Working Point:
 Q_x = 0.31, Q_y = 0.18
- The tune footprint is large but maybe better operating points exist.

 \mathbf{V}

Analytic Vertical Tune Spread:

 $\mathbf{\nabla}$

~1

-1-1

Physical vs. Dynamic Aperture

- Wiggler Gap Height = 25 mm
- Straight, Quad
 Bore Radius =
 52 mm

- How big do we need? How much will real effects in magnets reduce the dynamic aperture?
- In Progress: random distribution of multipole errors on every quadrupole, e.g.

Modified CESR-c Wiggler

- Possible Benefits:
 - Larger Gap Height
 - Larger Pole Width
 - It's a real magnet!
- Modifications:
 - Lowered Peak Field
 - Lengthened Magnet
- In Progress...

Future Plans

- Identify non-linearities of ILC wiggler design which restrict the dynamic aperture
- Investigate ILC wiggler options to maximize dynamic and physical aperture
 - Vary Pole Width
 - Vary Gap Height
 - Superconducting —

Modified CESR-c

Wiggler Design

Move to experimental investigation with CESR-c