Undulator Models and the Use of Long Straight Sections in the SPring-8 Storage Ring

<u>K.Soutome</u>, H.Tanaka, M.Takao, J.Schimizu, H.Yonehara Accelerator Group, SPring-8 (Japan)

Contents

Motivation

Model of Insertion Devices

Use of 30m-LSS

Low-Beta Insertion for 10T SCW

Summary

ID Model

- For simulation with small amplitudes => Halbach-type ID model will be enough.
- For simulation with large amplitudes, e.g. for simulation of beam injection
 - => ID model with nonlinear fields adequate in a wide range of aperture is needed as an input of simulation code.
 - => Also useful in analysis of some special (complicated) IDs

Use of 30m-LSS

- SPring-8 storage ring has four 30m-LSS in addition to normal straight sections. A long undulator is already installed and there remain three sections for innovative light sources for future use.
- Independent local tuning of lattice functions is required.
- => Dynamic aperture and momentum acceptance must be kept large.

Halbach-Type Model

Example: Magnetic Field of ID15

B_y = Acos(kx) on median plane (y=0, z=z₀)

cf. E.Forest and K.Ohmi, KEK Report 92-14

Amplitude of injected beam is about 10mm. Halbach-type model fits only locally and we need to extend the model.

Our Method

- Put multipole thin lens at both ends of ID.
- Prepare 3D magnetic field data on appropriate mesh points. (The field data is generated by our code or given as an input file and interpolated.)
- Trace the elctron trajectory from the entrance to the exit of ID by solving the equation of motion. (We used the Runge-Kutta of 4th order with 10mm step.)
- Change the initial position and repeat to get mapping data.
- Fit the strengths of multipoles so that (x, x', y, y')_{exit} is reproduced.

We checked that the results are almost independ of the number of thin lens positions. So we put multipole thin lens at the entrance and exit of ID.

Example: ID17

- Multi-Operation Mode Undulator: Figure-8 Mode ? H / V Polarization Helical Mode ? Circ. Polarization Asymmetric Figure-8 Mode
- **?** Fast Helicity Switching (>10Hz)

Total length	4.5m
Period length	13cm / 26cm
Number of periods	32 / 16
Gap	20mm
Maximum Ky (coil current)	5.0 (200A)
Maximum Kx	2.75

ID17 is now under tuning!

by K.Shirasawa

Magnetic Field of ID17

(example field data along off-axis at x=4mm, y=2mm)

by K.Shirasawa

Example of Multipole Fitting

Fitting with up to 16-poles Agreement is good but not perfect. => ... to be discussed later

Example of Multipole Fitting (cont.)

Fitting with up to 10-poles will be enough in this case.

Strength of Multipoles

		PM Only (w/o Yok	e) "Default"	I=+100A	I=-100A
Entrance	N4	-0.00011116	-0.0018663	0.0037541	-0.0052573
	S 4	9.9597e-06	0.00015046	4.4570e-05	-4.6742e-05
	NG	0.00010288	0.0087676	0.51206	-0.50293
	S6	-0.42487	0.29724	0.29036	0.28689
	N8	-0.074613	2.9241	-5.3136	4.7213
	S 8	-0.024056	-1.1979	0.12922	-1.7631
	N10	-1.9483	-66.899 -	2250.7	2392.3
	S10	-195.82	392.23	238.69	191.85
Exit	N4	-0.00010579	-0.0017337	0.0037167	-0.0054727
	s4	-4.1264e-06	-6.5888e-05	-0.00012031	0.00019378
	NG	0.00016917	0.0071736	-0.41479	0.41441
	S6	0.42489	0.29397	0.28957	0.28844
	N8	-0.10868	1.6554	-5.5162	5.8290
	S8	-0.024460	-0.25619	0.12395	-1.3835
	N10	2.5984	-60.071	1581.5	-1283.7
	S10	200.36	343.45	197.75	311.90

- Quadrupole and decapole components increase by iron yoke.
- Sextupole component increases by the electromagnets.
- Tune shift is about 0.02 and beta distortion is about 15%.
- => Correction by quadrupole (and sextupole) magnets are planned.

Simulation of Dynamic Aperture

Injection efficiency etc. will be affected.

Effects on Beam Lifetime

ID17 is of out-vacuum type and the above results indicate that by closing the gap the momentum acceptance is reduced due to nonlinear fields or H-V coupling changed.

Improvement of the Model

Use polynomials instead of multipoles.

Dependence on the Order of Polynomial

Dependence on the Order of Polynomial (cont.)

Polynomial fitting is better and the results can be used as an input of a simulation code, though they do not represent real fields of multipole correctors.

=> We are planning to use the new scheme in our simulation code.

Use of 30m-LSS

SPring-8 will come to the next phase of using "insertion devices": There remain three sections of 30m-long straight sections for innovative light sources.

For the most efficient use of these sections independent local tuning of lattice functions (beta, phase, dispersion) is required. => Symmetry of the ring is lowered. => Dynamic aperture and momentum acceptance become small.

How do we manage?

Possible Solution

For independent local tuning of lattice functions:

(1) Keep Betatron Phase Matching (for on-momentum particle)

(2) Make Local Chromaticity Correction (for off-momentum particle)

(3) Add Counter-Sextupole (for cancellation of nonlinear kick)

10T SCW as a Test Case

Basic Parameters

Dusie I di diffeters	
Number of Poles:	3
S/C Wire:	Nb ₃ Sn and NbTi
Maximum Field:	10 T
Stored Energy at 10T:	400kJ
Weight:	1000kg
Magnet Length:	1m
Pole Gap:	42mm
Beam Chamber:	65mm(H), 20mm(V)

Dipole Field

10T SCW as a Test Case (cont.)

Fabricated at Budker INP by N.Mezentsev, et.al. cf. M.Fedurin, et.al. NIM <u>A448</u>(2000)51, <u>A470</u>(2001)34.

Minimum shifts due to self-dispersion.

Low-Beta Insertion at LSS (tentative)

Ring Parameters

	Achromat Optics			Non-Achromat Optics		
	bef.	aft. SCW OT	aft. 10T	bef.	aft. SCW OT	aft. 10T
$\beta_{x}[m] \\ \beta_{y}[m] \\ \eta_{x}[m] \\ \sigma_{E}/E \\ e[nmrad] \\ \epsilon_{eff}[nmrad]$	23.5 14.4 0 0.11 6.59 6.59	2.5 13.0 0 0.11 6.98 6.98	- - 0.15 7.15 7.15	21.7 14.0 0.103 0.11 3.43 3.71	2.5 12.5 0 0.11 3.80 4.08	- - 0.15 4.32 4.84

Effective Emittance at Normal ID: e

$$e_{\rm eff} = \sqrt{e^2 + \frac{ed^2 h_{\rm ID}^2}{b_{\rm ID}}}$$

Local Chromaticity Correction

Achromat Optics (Half of the Matching Section)

Horizontal chromaticity (or betatron phase jump for off-momentum particles) should be corrected locally in consideration of beam injection and beam lifetime.

Similar to "noninterleaved sextupoles" scheme: K.L.Brown, IEEE Trans. Nucl. Sci. <u>NS-26</u> (1979) 3490. L.Emery, in Proc. 1989 IEEE PAC (1989) p.1225. K.Oide and H.Koiso, PR <u>E47</u>(1993) 2010.

Dynamic Aperture

We checked that momentum acceptance is enlarged by using counter-sextupoles. After tuning the strength of SF_{LOCAL} , $SX_{COUNTER}$ and other harmonic sextupoles...

The work is still in progress to get a better solution ...

Summary

- **ID model we presented is valid for a wide range of aperture.** Obtained **multipole/polynomial** strengths can be used directly as an input of simulation code.
- We showed the effectiveness of this scheme by taking a "multi-operation mode undulator" ID17 as an example.
- For the most efficient use of LSSs independent local tuning of lattice functions (beta, phase, dispersion) is required.
- To keep the dynamic aperture and momentum acceptance we proposed the following scheme: "Betatron Phase Matching" & "Local Chromaticity Correction" & "Counter-Sextupole".
- Beam test of lattice modification is planned using one LSS (w/o insertion devices).