Operation Experience of Insertion Devices at SPring-8

<u>K.Soutome</u>, H.Tanaka, M.Takao, J.Schimizu, H.Yonehara on behalf of SPring-8 Accelerator Group

Contents

Overview of SPring-8 Beam Parameters and ID Topics on Special IDs Summary

<u>3rd Generation Light Source SPring-8</u>

<u>1GeV Linac</u> <u>8GeV Booster Synchrotron</u> 8GeV Electron Storage Ring C=1436m I=100mA DBA with four 30m-LSSs e=6.6nmrad (achromat) 3.4nmrad (non-achromat)

Typical Optics without LSS

<u>Hybrid Optics</u> 6.9nmrad 1997/3-1999/7

HHLV Optics 6.3nmrad 1999/9-2000/7

HHLV: High Horizontal and Low Vertical Beta

Typical Optics with LSS

Achromat Optics 6.6nmrad 2000/8-2002/11 2003/10-

Non-Achromat Optics (Low-Emittance Optics) 3.4nmrad 2002/11-2003/10

Insertion Devices

Up to now 26 insertion devices are installed.

In-Vacuum ... Total 20

Standard Type ... Total 12

 $(l = 32mm, N=140, Min.Gap=8mm, K_{max}=2.5)$

ID24: Figure-8

ID19: 25m-Long Planner (**l** = 32mm, N=780)

* Minimum gap value (full) is 7mm for ID20.

Out-Vacuum ... Total 6

ID08: Elliptical Wiggler ($\mathbf{l} = 120$ mm, N=37, $K_{max}^{y}=10$)

ID15: Revolver (Planner/Helical)

ID17: Combination of Permanent Magnets and Electromagnets with Iron-Poles Fast Switching of Helicity, Figure-8 (Symmetric/Asymmetric)... under tuning ID23: APPLE-II (Planner/Helical/Vertical)

ID25: Helical Tandem, Fast Switching with Bump Orbit (1-10Hz)

ID27: Figure-8

* Vertical aperture (full) is 15mm.

Beam Size (Emittance) Measurement

Two-Dimensional Visible Light Interferometer : H, V M.Masaki and S.Takano, J.Synchrotron Rad. <u>10</u> (2003) 295

Phase Zone Plate with 8keV X-ray : V S.Takano, et.al, in Proc. DIPAC2001, ESRF, p.145.

X-ray Intensity Interferometry : V M.Yabashi, et.al, PRL <u>87</u> (2001) 140801, PRL <u>88</u> (2002) 244801, PR <u>A69</u> (2004) 023813.

From Beam Parameters such as Touschek Lifetime : V

M.Takao, et.al, in Proc. PAC1999, New York, p.2349.

H.Tanaka, et.al, NIM A486 (2002) 521.

Vertical Dispersion as a Probe : V H.Tanaka, et.al, in Proc. EPAC2000, Vienna, p.1575.

Pulsed-Bump & Scraper : H

K.Soutome, et.al, SPring-8 Ann. Rep. 1999, p.136. http://www.spring8.or.jp/e/publication/ann_rep/AR99PDF/p136-138.pdf

Horizontal Emittance of Typical Optics

Horizontal Emittance and ID

Measured with Two-Dimensional Visible Light Interferoemter

As ID Gaps are closed, the emittance is reduced by about 20% due to radiation damping in both achromat and non-achromat optics.

Horizontal Emittance and ID (cont.)

As the number of ID increases, the emittance is reduced.

Vertical Emittance

Measured by X-ray Intensity Interferometry (14.41keV)

Non-Achromat (Low-Emittance) Optics Electron Beam Size: $s_y = 4.6 \pm 0.14$ mm Vertical Emittance: $e_y = 3.6 \pm 0.2$ pm.rad Coupling Constant: k = 0.12 %

Vertical Emittance and ID

We observed no drastic change of vertical beam size (emittance).

Tune Shift and ID

The discrepancy will be due to impedance effects, etc.

Bunch Length and ID

The amount of bunch lengthening is smaller than expectation. => Impedance effect is a possible reason.

Beam Lifetime and ID

Achromat Optics

Multi-Bunch Mode

Several-Bunch Mode

In the non-achromat optics the beam lifetime is shorter. => Top-up injection started in user operation since 2003/9. Now **DI**/I < 0.1%.

ID19: 25m-Long Planner Undulator

Photon Flux

Betatron Tune Shift

Experimental data agrees well with calculations.

ID19: 25m-Long Planner Undulator (cont.)

Injection Efficiency as a Function of Gap Height

Experiment

Simulation

ID19: 25m-Long Planner Undulator (cont.)

Effective Height of Vacuum Vessel at the Largest Vertical Betatron Function Tail of the particle desity seems to have a dependence of y⁻² during the damping process.

M.Takao, et.al., in Proc. EPAC2004 (Lucerne) p.417.

ID17: Multi-Operation Mode Undulator

by K.Shirasawa

Effects on the stored beam is large and tuning is in progress. => Improvement of the ID model including nonlinear kicks ... to be discussed tomorrow

10T Superconducting Wiggler

10T SCW by Budker INP was tentatively installed in August 2002 in the normal straight section ($\mathbf{b}_x = 24$ m), and beam tests were carried out with a low current.

K.Soutome, et.al., in Proc. PAC2003 (Portland) p.250.

Summary

- Achromat (6.6nmrad) and non-achromat(3.4nmrad) optics
- => Non-achromat optics was optimized so as to minimize the effective emittance (dispersion effects included).
- ID gap closed => About 20% reduction of the horizontal emittance
- No drastic worsening of vertical emittance.
- Vertical tune and bunch length seem to be affected by impedance.
- Injection efficiency and beam lifetime => Top-up injection
- Improvement of the model
- => ID combined with iron yoke is difficult to manage (ID17).
- => Correction with quad. and sext. will be carried out in the future.
- Generation of high-energy gamma rays
- => 10T SCW project is in progress.

Possible application: nuclear astrophysics, slow-positron beam