SUPERCONDUCTIVE UNDULATORS/WIGGLERS STATUS-QUO AND FUTURE DEVELOPMENTS

(THE ANKA SC UNDULATOR PROGRAM)

R. Rossmanith (ANKA) for the collaboration

T. Baumbach, A. Bernhard (University of Karlsruhe)
B. Kostka, M. Hagelstein (ANKA)
E. Steffens, M. Weisser (University of Erlangen-Nürnberg)
M. Kläser, M. Schneider (I TP, Research Center Karlsruhe)
D. Dölling, D. Krischel, A. Hobl, S. Kubsky (ACCEL I nstr. GmbH)

MOTIVATION

- Higher field for given period length
- (or larger gap for same period length and field)
- (or shorter period length for same field)
- Electrical tunability (no mechanically moving parts)

Late 90's: beam test at Mainz cw microtron with an in-vacuum sc undulator

Period length 3.8 mm 100 periods

What fields were (and can be) achieved?

Field Limitations

Danger: magnetic forces try to move wires a quench

Three critical points in the construction of a sc undulator

I.) Magnetic forces try to move wires a quench: 2 critical zones

Collimator system in front of undulator (example for ANKA)

Top view (completely closed)

b.) Resistive wall beam heating

Inner wall:

Cu or HTSC

 $R_{room temp}/R_{4K} = RRR$ -factor (typically 60 -100) <u>High temperature:</u> R defined by lattice vibrations and imperfections

ANKA Undulator

100 periods, 14 mm period length, gap 5 or 8 mm, max. 1.5 T @ 5mm

Stretched wire field masuement

(integral measurements)

III. Field quality (phase error):

different to permanent magnet undulator only mechanical errors

Field measurements with Hall probes calibrated at 4.2 K (or 1.8 K)

Mechanical errors (can be compensated by classical shimming techniques)

a.) temperature effects (bi-metal)

b.) Position errors of the individual building elements

First undulator equipped with electrical shimming will be EU project. ESRF undulator (ANKA – ELETTRA – MAXLAB - ESRF collaboration)

New project: SC undulator with electrically

Variable polarization

Example:

Blue vertical field

Red horizontal field

Summary:

Achieved: field factor 2 higher than in-vacuum room temperature permanent magnet devices
Beam tests with single pass beams successful
Storage ring test very soon (next weeks)
Undulators with intelligent electrical shimming under construction (EU-Project)
Next generation with factor 3 higher field under way