Wiggling wiggler

Build wiggler poles symmetric with respect to the beam orbit

In order to check the the amount of nonlinearities in such a structure we have compared it with the normal structure of our wiggler

The simulation has been performed by:

- calculating the beam trajectory in the wiggler on the nominal starting position, with the orbit almost symmetric with respect to the wiggler axis
- checking the behaviour of the output angle versus horizontal position
- displacing the measured points in the field map by the position of the beam at each point
- checking the behaviour of the output angle versus horizontal position in this new field configuration

M2 M3

M4

R

0.7968

-129.69

29.25

1

$Y = M0 + M1^*x + M8^*x^8 + M9^*x^9$	
MO	3.9148e-08
M1	-0.0085408
M2	0.43523
M3	-4.2241
M4	-144.25
R	1

Multipole amount (with respect to standard wiggler)

Quadrupole	25%
Sextupole	55%
Octupole	15%