Linear and non-linear modeling of the modified DAФNE wiggler

Catia Milardi

Contributors

G. Benedetti, M. Preger, P. Raimondi

Ref: "The modified wiggler of the DAFNE Main Rings" DAFNE Technical Note MM-34
"The Wiggler Transfer Matrix"
DAFNE Technical Note L-34
"Hard-Edge Model of the DAFNE Wigglers" DAFNE Technical Note L-35
http://www.Inf.infn.it/acceleratori/dafne/technotes.html

Wiggler full map

Obtained by fitting the transverse measurements of the vertical field using a polynomial expansion of the field around the wiggler axis

$$
B(z, x)=B(z, 0)+\sum_{1}^{\infty} \frac{1}{n!}\left(\frac{\partial^{n} B}{\partial x^{n}}\right)_{0} x^{n}
$$

$$
\begin{aligned}
& \mathrm{B}=1.8 \mathrm{~T} \\
& \mathrm{E}=.51 \mathrm{GeV}
\end{aligned}
$$

Due to the symmetry in the wiggler

$$
B_{x}(x, 0, z)=B_{z}(x, 0, z)=0
$$

Relying on magnetic measurements

The transverse behaviour of the vertical field in the region of the beam trajectory ($\pm 12 \mathrm{~mm}$) is accurately fitted by a $2^{\text {th }}$ order polynomial interpolating the points measured at intervals of 1 cm in the range $\pm 30 \mathrm{~mm}$

$$
B_{y}(x, 0, z)=b_{0}(z)+b_{1}(z) x+b_{2}(z) x^{2}
$$

while the longitudinal dependence of the b_{i} coefficients requires a $4^{\text {th }}$ order polynomial approximation

$$
\begin{aligned}
& b_{0}(z)=b_{00 i}+b_{01 i} z+b_{02 i} z^{2}+b_{03 i} z^{3}+b_{04 i} z^{4} \\
& b_{1}(z)=b_{10 i}+b_{11 i} z+b_{12 i} z^{2}+b_{13 i} z^{3}+b_{14 i} z^{4} \\
& b_{2}(z)=b_{20 i}+b_{21 i} z+b_{22 i} z^{2}+b_{23 i} z^{3}+b_{24 i} z^{4}
\end{aligned}
$$

the horizontal and longitudinal field components for $y \neq 0$ can be obtained, in the linear approximation, from the curl theorem

$$
\begin{gathered}
B_{x}(x, y, z) \approx \frac{\partial B_{x}}{\partial y} y=\frac{\partial B_{y}}{\partial x} y=\left[b_{1}(z)+2 b_{2}(z) x\right] y \\
B_{z}(x, y, z) \approx \frac{\partial B_{z}}{\partial y} y=\frac{\partial B_{y}}{\partial z} y=\left[\frac{\partial b_{0}(z)}{\partial z}+\frac{\partial b_{1}(z)}{\partial z} x+\frac{\partial b_{2}(z)}{\partial z} x^{2}\right] y
\end{gathered}
$$

Trajectory in the wiggler

The equations of motion for a test particle going through the wiggler can be written according to the expression for the Lorentz force :

$$
\begin{aligned}
& \vec{F} \\
&=e \vec{v} \times \vec{B} \\
& \frac{\partial^{2} x}{\partial t^{2}}=a\left(\frac{\partial y}{\partial t} B_{z}-\frac{\partial z}{\partial t} B_{y}\right) \\
& \frac{\partial^{2} y}{\partial t^{2}}=a\left(\frac{\partial z}{\partial t} B_{x}-\frac{\partial x}{\partial t} B_{z}\right) \\
& \frac{\partial^{2} z}{\partial t^{2}}=a\left(\frac{\partial x}{\partial t} B_{y}-\frac{\partial y}{\partial t} B_{x}\right)
\end{aligned}
$$

- The equations of motion have been solved numerically using the previous field approximations.
- A vanishing field integral along the particle trajectory has been obtained by finding the correct current in the terminal pole windings, by means of a linear interpolation between two maps taken at different terminal currents.
- The wiggler transfer matrix \mathbf{M} is obtained by particle tracking as a function of small variation in its initial conditions:

$$
x, x^{\prime}, \Delta E / E, y, y^{\prime}
$$

-The \mathbf{M} matrix is asymmetric due to the asymmetry in the wiggler end poles

$$
\begin{aligned}
\mathrm{M}_{\mathrm{B}(\mathrm{SXT}) \text {-->A }} & =\left(\begin{array}{ccccc}
1.13395 & 2.28576 & 0.00031 & 0.00767 & -0.00044 \\
0.07580 & 1.03514 & -0.00049 & 0.00360 & -0.00052 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -0.18381 & 1.17653 \\
0 & 0 & 0 & -0.83261 & -0.11092
\end{array}\right) \\
\mathbf{M}_{\mathrm{A}-->\mathrm{B}(\mathrm{SXT})} & =\left(\begin{array}{ccccc}
1.03489 & 2.28369 & -0.00149 & -0.00044 & 0.00030 \\
0.07202 & 1.12119 & -0.00068 & -0.00035 & 0.00501 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & -0.11151 & 1.17685 \\
0 & 0 & 0 & -0.83276 & -0.17886
\end{array}\right)
\end{aligned}
$$

- The \mathbf{M} matrix is not unitary and not symplectic!

Horizontal beam trajectories \mathbf{x} in the wiggler
initial conditions:

$$
\begin{aligned}
& x_{0}=-11.8 \mathrm{~mm} \\
& x_{0}^{\prime}=y_{0}=y_{0}^{\prime}=0
\end{aligned}
$$

$$
I_{w i g}-I_{s t r}=6.62 \mathrm{~mm}
$$

$$
\left|\boldsymbol{x}_{f}-\boldsymbol{x}_{i}\right| \sim 1.2 \mathrm{~mm}
$$

Vertical beam trajectories \mathbf{y} in the wiggler

initial conditions:

$$
\begin{array}{ll}
y_{0}=1 \mathrm{~mm} & \text { red line } \\
x_{0}^{\prime}=x_{0}=y_{0}^{\prime}=0 & \\
y_{0}^{\prime}=1 \mathrm{mrd} & \text { blue line } \\
x_{0}^{\prime}=x_{0}=y_{0}=0 &
\end{array}
$$

the wiggler vertical focusing effect is evident

Multipole coefficients

-The effects of high order terms in the tranverse field expansion on the beam dynamics are described by the multipole coefficients
-The multipole coefficients can be obtained from the particle trajectory and the field derivatives on the wiggler axis

$$
K_{n}=\frac{1}{B \rho} \int \frac{\partial^{n} B(z, x)}{\partial x^{n}} d z
$$

-The general expression for the field derivatives along the wiggling trajectory is

$$
\frac{\partial^{k} B(z, x)}{\partial x^{k}}=\left(\frac{\partial^{k} B}{\partial x^{k}}\right)_{0}+\sum_{k+1}^{\infty} \frac{1}{(n-k)!}\left(\frac{\partial^{n} B}{\partial x^{n}}\right)_{0} x^{(n-k)}
$$

Multipole coefficient explicit expression

$$
\begin{aligned}
& K_{1}=\frac{1}{B \rho}\left[\int \frac{\partial B}{\partial x} d z+\int \frac{\partial^{2} B}{\partial x^{2}} x d z+\frac{1}{2} \int \frac{\partial^{3} B}{\partial x^{3}} x^{2} d z+\frac{1}{6} \int \frac{\partial^{4} B}{\partial x^{4}} x^{3} d z\right] \\
& K_{2}=\frac{1}{B \rho}\left[\int \frac{\partial^{2} B}{\partial x^{2}} d z+\int \frac{\partial^{3} B}{\partial x^{3}} x d z+\frac{1}{2} \int \frac{\partial^{4} B}{\partial x^{4}} x^{2} d z\right] \\
& K_{3}=\frac{1}{B \rho}\left[\int \frac{\partial^{3} B}{\partial x^{3}} d z+\int \frac{\partial^{4} B}{\partial x^{4}} x d z\right] \\
& K_{4}=\frac{1}{B \rho} \int \frac{\partial^{4} B}{\partial x^{4}} d z
\end{aligned}
$$

Where all derivatives are taken on the wiggler axis and x is the beam trajectory

Multipole coefficient evaluation

	Term.B (SXT)	First pole	Second pole	Third pole	Fourth pole	Fifth pole Term.A	Full wiggler	
$\mathbf{K}_{1}{ }^{\text {MAD }}\left(\mathbf{m}^{-1}\right)$	0.043	0.012	0.004	0.005	0.003	-0.003	0.000	0.064
$\mathbf{K}_{\mathbf{2}}{ }^{\text {MAD }}\left(\mathbf{m}^{-2}\right)$	-4.7	2.0	-1.1	1.8	-1.5	1.4	-0.4	-2.6
$\mathbf{K}_{3}^{\text {MAD }}\left(\mathbf{m}^{-3}\right)$	-30	70	38	78	74	84	45	358
$\mathbf{K}_{4}{ }^{\text {MAD }}\left(\mathbf{m}^{-4}\right)$	$2.8 \cdot 10^{3}$	$8.3 \cdot 10^{3}$	$-9.1 \cdot 10^{3}$	$8.3 \cdot 10^{3}$	$-9.4 \cdot 10^{3}$	$10.0 \cdot 10^{3}$	$-5.0 \cdot 10^{3}$	$5.8 \cdot 10^{3}$

- After the wiggler modification the main contribution to the $1^{\text {st }}$ order multipole comes from the terminal pole B where the trajectory has a $\sim 12 \mathrm{~mm}$ offset in the additional $2^{\text {nd }}$ order multipole introduced to improve chromaticity correction
- $2^{\text {nd }}$ order multipole comes mainly from the second derivative of the field and is larger in the end pole B
- $3^{\text {rd }}$ order multipole comes from the $4^{\text {th }}$ order term in the field expansion combined with the wiggling trajectory

Wiggler linear model

- Knowing:
- the trajectory on the horizontal symmetry plane:
amplitude
deflection angle
length
- the wiggler pole transfer matrix
- Each wiggler pole having a L_{p} length is described as a hard edge dipole and 2 drift sections

$$
L_{p}=L_{\text {dip }}+2 L_{\text {drift }}
$$

- L_{p} is assumed equal to the integrated particle path length over the pole

$$
L_{p}=\int_{\text {pole }} x d z
$$

Linear model parameters

the linear wiggler model is determined by setting the parameters:
$\theta \quad$ dipole deflection angle
$\mathrm{e}_{1} \mathrm{e}_{2}$ dipole entrance and exit angle
$f_{\text {edge }}$ dipole edge focusing parameter
$L_{\text {drift }}$ length of the drift section

For each wiggler pole:

$$
\begin{array}{ll}
\vartheta=\frac{1}{B \rho} \int B_{y} d z \\
\mathrm{e}_{1}=\quad \mathrm{e}_{2}=\theta / 2 & \text { for inner poles } \\
\mathrm{e}_{1}=0 \quad \mathrm{e}_{2}=\theta & \text { for terminal poles }
\end{array}
$$

$\mathrm{f}_{\text {edge }}$ and $L_{\text {drift }}$ have been set in order to reproduce the vertical block of the wiggler pole transfer matrix

	Term.B (SXT)	Inner pole	Term. \mathbf{A}
$\boldsymbol{L}_{\text {drift }}(\mathbf{m})$.1368	.2355	.1368
$\boldsymbol{L}_{\text {pole }}(\mathbf{m})$.2	.32	.2
$\boldsymbol{\theta}(\mathbf{r a d})$.1196	.2375	.1167
$\mathbf{f}_{\text {edge }}$.384	.317	.384

wiggler non-linear model

non-linear terms are included adding at both sides of each hard edge bend a thin lens providing the previously described

$$
K_{i} \quad i=1 . .4
$$

multipole terms
For the inner poles each K_{i} has been taken equal to the average over the values obtained for the five poles

Further focusing effects
arise from the $1^{\text {st }}$ order multipole added on the terminal B in combination with the horizontal orbit

$$
\begin{aligned}
& \Delta K_{1} \sim \Delta K_{2} \Delta \mathrm{x} \\
& \Delta K_{1} \sim .007 \mathrm{~m}^{-1} \quad \text { for } \Delta \mathrm{x} \sim 1.5 \mathrm{~mm}
\end{aligned}
$$

The wiggler vertical field, dashed line, together with the hard edge model, full line.

Conclusions

Magnetic measurements are fitted in order to get the magnetic field polynomial expansion around the wiggling trajectory.

Wiggler full map has been used to define a test particle trajectory inside the wiggler

Studying the particle trajectory as a function of initial conditions the wiggler first order transfer matrix has been obtained for the whole wiggler as well as for the single poles

Knowing the particle trajectory and the field derivatives on the symmetry plane the K_{n} multipole coefficient are evaluated

All these elements have been used to build a wiggler model, to be used within the MAD simulation code

