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Wiggler full map

Obtained by fitting the transverse measurements
of the vertical field using a polynomial expansion
of the field around the wiggler axis
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Due to the symmetry in the wiggler 
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Relying on magnetic measurements

The transverse behaviour of the vertical field in the region of the
beam trajectory (±12 mm) is accurately fitted by a 2th order
polynomial interpolating the points measured at intervals of 1 cm in
the range ± 30 mm

€ 

By (x,0,z) = b0 (z) + b1(z)x + b2 (z)x
2

while the longitudinal dependence of the bi coefficients requires a 4th

order polynomial approximation
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the horizontal and longitudinal field components
for y ≠ 0 can be obtained, in the linear
approximation, from the curl theorem
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Trajectory in the wiggler

The equations of motion for a test particle going
through the wiggler can be written according to the
expression for the Lorentz force :
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• The equations of motion have been solved
numerically using the previous field
approximations.

• A vanishing field integral along the particle
trajectory has been obtained by finding the
correct current in the terminal pole windings, by
means of a linear interpolation between two
maps taken at different terminal currents.



•The wiggler transfer matrix M is obtained by particle
tracking as a function of small variation in its initial
conditions:

      x, x’, ∆E/E, y, y’
•The M matrix is asymmetric due to the asymmetry in the
wiggler end poles

MB(SXT) -->A=

€ 

1.13395 2.28576 0.00031 0.00767 −0.00044
0.07580 1.03514 −0.00049 0.00360 −0.00052

0 0 1 0 0
0 0 0 −0.18381 1.17653
0 0 0 −0.83261 −0.11092

MA --> B(SXT) =

€ 

1.03489 2.28369 −0.00149 −0.00044 0.00030
0.07202 1.12119 −0.00068 −0.00035 0.00501

0 0 1 0 0
0 0 0 −0.11151 1.17685
0 0 0 −0.83276 −0.17886

• The M matrix is not unitary and not symplectic!
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Horizontal beam trajectories x in the wiggler

initial conditions:
  x0 = -11.8 mm
  x0

’ = y0 = y0
’
 =  0

blue line         x      B(SXT) --> A
red line           x      A --> B(SXT)

lwig - lstr  = 6.62 mm

|xf -xi| ~ 1.2 mm

B(T)



Vertical beam trajectories y in the wiggler

initial conditions:
  y0 = 1 mm                red line
  x0

’ = x0 = y0
’
 =  0    

  y0’ = 1 mrd               blue line
  x0

’ = x0 = y0 =  0    
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the wiggler vertical focusing
effect is evident



•The effects of high order terms in the tranverse field expansion on the
beam dynamics are described by the multipole coefficients

•The  multipole coefficients can be obtained from the particle trajectory
and the field derivatives on the wiggler axis
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•The general expression for the field derivatives along the
wiggling trajectory is

Multipole coefficients



Where all derivatives are taken on the wiggler axis and x is the
beam trajectory
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Multipole coefficient explicit expression
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Term.B
(SXT)

First pole Second
pole

Third
pole

Fourth
pole

Fifth pole Term.A Full
wiggler

K1
MAD (m-1) 0.043 0.012 0.004 0.005 0.003 -0.003 0.000 0.064

K2
MAD (m-2) -4.7 2.0 -1.1 1.8 -1.5 1.4 -0.4 -2.6

K3
MAD (m-3) -30 70 38 78 74 84 45 358

K4
MAD (m-4) 2.8.103 8.3.103 -9.1.103 8.3.103 -9.4.103 10.0.103 -5.0.103 5.8.103

• After the wiggler modification the main contribution to the 1st

order multipole comes from the terminal pole B where the
trajectory has a ~12 mm offset in the additional 2nd order
multipole introduced to improve chromaticity correction

• 2nd order multipole comes mainly from the second derivative of
the field and is larger in the end pole B

• 3rd order multipole comes from the 4th order term in the field
expansion combined with the wiggling trajectory

Multipole coefficient evaluation



•Knowing:
- the trajectory on the horizontal symmetry plane:
     amplitude 
     deflection angle 
     length
 - the wiggler pole transfer matrix

•Each wiggler pole having a Lp length is described as a
  hard edge dipole and 2 drift sections

                                     Lp=Ldip+ 2Ldrift

•Lp is assumed equal to the integrated particle path length
  over the pole

Wiggler linear model
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Lp = x dz
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the linear wiggler model is determined by setting the parameters: 

θ          dipole deflection angle
e1 e2    dipole entrance and exit angle
fedge        dipole edge focusing parameter
Ldrift         length of the drift section

Linear model parameters



For each wiggler pole:

e1  =     e2 = θ/2      for inner poles
e1  = 0  e2 = θ          for terminal poles

fedge and Ldrift have been set in order to reproduce
the vertical block of the wiggler pole transfer
matrix

Term.B
(SXT)

Inner
pole

Term.
A

Ldr i f t (m) .1368 .2355 .1368
Lp o l e (m) .2 .32 .2
θ (rad) .1196 .2375 .1167

fe d g e .384 .317 .384
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wiggler non-linear model

non-linear terms are included adding at both sides of each
hard edge bend a thin lens providing the previously
described

Ki      i = 1..4

multipole terms

For the inner poles  each Ki  has been taken equal to the
average over the values obtained for the five poles



Further focusing effects

arise from the 1st order multipole added on the
terminal B in combination with the horizontal orbit

ΔK1 ~ ΔK2 Δx

ΔK1 ~ .007 m-1        for Δx ~ 1.5 mm



end-pole B
(SXT)

end-pole A... inner poles …

θc , Kc
i ,lcθB , KB

i ,lB θA, KA
i ,lA

2 m

The wiggler vertical field, dashed line, together with
the hard edge model, full line.



Magnetic measurements are fitted in order to get the
magnetic field polynomial expansion around the wiggling trajectory.

Wiggler full map has been used to define a test particle trajectory
inside the wiggler

Studying the particle trajectory as a function of initial conditions the
wiggler first order transfer matrix has been obtained for the whole
wiggler as well as for the single poles

Knowing the particle trajectory and the field derivatives on the
symmetry plane the Kn multipole coefficient are evaluated

All these elements have been used to build a wiggler model, to be
used within the MAD simulation code

Conclusions


