WIGGLE 05

LNF, 21-21 February 2005

LNF Accelerators

- DAFNE Φ-factory e⁺ e⁻ double ring .51 GeV collider. Running for the KLOE experiment to measure CP violation in K meson decay.
- SPARC e- photoinjector for SASE
 FEL and R&D on high brigthness
 beams. Under construction.

WIGGLERS

- Wigglers are largely used in storage rings:
 - To increase radiation damping
 - To control emittance
 - From one wiggler inserted in a straight section to wiggler dominated rings they allow a wide flexibility in the choice of design parameters making the emission of radiation independent on the radius and energy of the ring.

Wigglers are used in different type of rings :

- Synchrotron light sources
 - increase the energy and flux of the emitted radiation
 - reduce emittance
- Low energy colliders
 - increase radiation damping
 - increase emittance
- Damping ring for the linear colliders
 - reduce damping time
 - reduce emittance

PROS and Drawbacks

- Increasing radiation damping reduces beam instabilities
- Nonlinear terms in the wiggler field can reduce the dynamic aperture
- Can be an accumulation point for ecloud in e+ rings.

TESLA DR wiggler

 $\tau \propto \gamma C/U_{0} \qquad ; \qquad U_{0} = \gamma^{2} \int B^{2} dI$ $\tau = 28 \text{ ms } @ 5GeV$ C = 17 Km $U_{0,arc} = 1.1 \text{ MeV} \qquad ; \qquad U_{0,wig} = 20 \text{ MeV}$ $F_{w} = U_{0,wig} / U_{0,arc} = 17.5$ $\int B^{2} dI = 605 \text{ T}^{2}\text{m} \implies B = 1.6\text{ T}, L \sim 400 \text{ m}$

This workshop

- The motivation is the need to optimize the wiggler parameters and design for the LC damping rings.
- exchange experience between the different communities: ligth sources, colliders and damping rings.
- discuss the following items:
 - Optimization of magnet design
 - Best field modelling for simulation programs
 - Comparison of measurements and simulations
 - Methods to reduce harmful effects and improve dynamic aperture.

- The workshop is under the auspices of ELAN European Linear Accelerators Network.
 Coordinate european R&D on electron linear accelerators and colliders.
- EUROTeV European Design Study on TeV LC aims to form the linac technology independent part of the European Regional Design Group of the ILC.
- Within the EUROTEV DR Work Package one task is dedicated to wiggler field modeling and dynamic aperture optimization.
- We expect that the workshop could provide useful tools for this task.

BUON LAVORO!

Some pratical informations

- Bus:
 - today 18:30 to: Villa Campitelli, Frascati.
 - Tuesday 8:30 Frascati, Villa Campitelli, LNF.
- Lunch at ENEA (look at your map)
- 20:00 Dinner at Zaraza', Frascati downtown (look in the map)
- Who needs tickets for the train Tor Vergata \Rightarrow Roma Termini ask Manuela!

Emittance for a wiggler dominated ring

$$F_{w} = U_{0,wig} / U_{0,arc} = 17.5$$

$$\varepsilon_{\rm x} = \varepsilon_{\rm arc} / (1 + F_{\rm w}) + \varepsilon_{\rm wig} F_{\rm w} / (1 + F_{\rm w})$$

$$F_{w} >> 1 \qquad \qquad \epsilon_{x} \sim \epsilon_{arc} / F_{w} + \epsilon_{wig}$$

$$\varepsilon_{\rm w} \propto {\rm B}_{\rm wig}^{3} \lambda^2 < \beta >$$