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Outline

• A simple and physical presentation of three-dimensional 
magnetic field of wiggler
– Intrinsic nonlinear field
– fields of finite width poles
– DESY dogbone wiggler

• Hybrid symplectic integrators
• Damping rings based on the non-interlaced sextupoles

– Scaling of dynamic aperture
– Design lattices: compact damping ring & dogbone
– Dynamic effects due to wigglers
– Specification of wiggler magnets

• Conclusion



Intrinsic Field of Wiggler
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Magnetic field: (Bx=0) 

Its vector potential: (Ay=Az=0)

where                  and λw is the period of wiggler. Each mode 
independently satisfies:
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Note it does not depend on coordinate x. This makes Hamiltonian:
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exactly solvable.



Field from Finite Width Poles
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Magnetic field [Halbach]: (Bx(x,h,s)=0)

Its vector potential in the axial gauge: As=0

where                                                         and h is height of magnetic material.

Bx
(n,m) ~1/cosh[kx

(n,m)w].
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DESY Dogbone Wiggler 
(λw=0.4m, w=60mm)

y = 0 mm                                                        y=6 mm

Field map of a quarter period includes Bx, By, Bs on grid of 11 x 11 x 51 with 
cubic dimension: 1mm x 1mm x 2mm. The residual of the fitting isa few 
Gausses as shown: field saturation

Fixed parameters: λw=0.4m, h=0.025m and fitting parameters: 
Ns=30, Nsy=7, Ny=2 (44 modes or 88 parameters)



Amplitudes of Modes

• Relative fewer modes in 
the fitting

• Modes has physical meaning 
and simple relation to 
wiggler parameters: λw, h, 
and w.

• Easily used to make 
specification of field 
quality of the wiggler 
magnet

• Modes due to saturation 
are not included

mode number
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Intrinsic modes

pole width modes

Large terms are those
intrinsic ones and 
the pole width modes
are small perturbation.



Symplectic Conditions in 
Hamiltonian System

Increment: 
5σy

6th order

8th order

Taylor map (Zlib)                  Mix-variable generating
function (Zlib) 

element-by-element tracking (LEGO)



Hamiltonian for Wiggler in 
Cartesian Coordinate  
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This Hamiltonian is used in LEGO



Hybrid Integrators for S-
Dependent Hamiltonian
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Separate H(s) into three exactly “solvable” parts:

drift (explicit)

kick (explicit)

second-order integrator:

• Can be easily shown using the Baker-Cambell-Hausdorf formula
• Becomes the exact solution at the limit of infinite number of segments
• Preserves symplectic condition during the integration

generating function



Mixed Variable Generating 
Function
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In general, these equations have to be solved numerically. But for 
special form of H, such as H2 which has linear dependency to px and 
py, they are solvable analytically. In this case, we retain all the nice 
properties of explicit integrators. For example, use differential 
algebra to obtain high-order maps.

The first order 
perturbation recovers 
Hamiltonian equation



Lattice of a Simple Ring 
with 900 FODO Cells

Two families of interlaced sextupoles: SF&SD



Optimizing Dynamic Aperture with 
the Phase Advance In Straights

+900

+1800 +3600

The best phase advances in straight section are nearly integer of 3600,
which maximizes the symmetry of the ring.

chosen one



Dynamic Aperture v.s. Strength 
of Sextupoles

Dynamic aperture scales inversely proportional to the strength
of the sextupoles! It is not so bad and it can be worse.



Scaling of Dynamic Aperture

scaling of phase space                  solid lines are inverse curves

Dynamic aperture is determined by the location of fix points In
phase space when a single resonance dominates the system. 
Perturbation theory can be used to explain this scaling property
of the dynamic aperture.



Reduce Emittance by Enlarging the 
Ring While Keeping the Cell 

Structure
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Scaling properties:

Simulation of actual lattices:

40 cells -> 80 cells -> 160 cells,
εx=47 nm -> 7 nm -> 1 nm
C=960 m -> 1560 m ->  2760 m



Add Wigglers to Reduce the 
Damping Time 

100 meters of wiggler are used to reduce the damping time to 21 ms.



Non-Interlaced Sextupoles to
Optimize Dynamic Aperture

Interlaced sextupoles                    non-interlaced sextupoles

Non-interlaced sextepoles are three times stronger than interlaced ones.



Parameters of Damping Ring 
Based on 900 FODO cell

-60, -60Chromaticity ξx,ξy

4.5 MevEnergy loss per turn U0

1.3x10-3Energy spread σe/E
2.2 cmBunch length σz

6.0x10-4Momentum Compaction αc

47.81, 47.68, 0.016Tunes, νx,νy,νs

21 msDamping time τx

0.3 nm-radHorizontal Emittance εx

2820 meterCircumference C
5 GevEnergy E



Detuned π Cell: 1790



Parameters of a Compact Damping 
Ring Based on  Detuned π cell

-60, -60Chromaticity ξx,ξy

4.70 MevEnergy loss per turn U0

1.27x10-3Energy spread σe/E
8.3 mmBunch length σz

2.83x10-4Momentum Compaction αc

47.81, 47.68, 0.021Tunes, νx,νy,νs

20 msDamping time τx

0.49 nm-radHorizontal Emittance εx

2820 meterCircumference C
5 GevEnergy E



Dogbone Damping Rings

0.620.50Horizontal emittance (nm)

21.020.4Energy loss per turn (Mev)
-105, -106-125,-62.5Chromaticity ξx, ξy

5025Cavity Voltage (MVolt)

SLACDESY Parameters

1.30x10-31.29x10-3Energy spread σe/E
5.906.04 Bunch length σz (mm)

1.11x10-41.22x10-4Momentum compaction αc

83.79, 83.64, 0.07276.31, 41.18, 0.071Tunes, νx,νy,νs

2728Damping time (ms)

17,02217,000Circumference (m)
55Energy E(Gev)



Dynamic Aperture Comparison

DESY dogbone damping ring                 SLAC dogbone damping ring 

Injected beam: εx = εy = 1x10-6 m-rad, tracked using LEGO 
with linear wigglers.



Dynamic Apertures with/without
an Ideal Wiggler (single mode)

Linear wiggler                                  Ideal nonlinear wiggler

Impact on the dynamic aperture (CDR) is barely noticeable for an ideal 
but nonlinear wiggler. The problem of wiggler in the lattice is solvable 

with more engineering effort.



Dynamic Aperture with DESY 
Dogbone Wigglers

3σ of injected beam

Linear wiggler                       Full nonlinear wiggler

Dynamic aperture is entirely dominated by 24 wigglers
in the lattice. They act like physical scrappers.



Other Dynamical Effects of 
Wigglers

Orbit                                                 Dispersion

Path length • Nonlinear end poles are 
matched for centering the orbit

• Path length of wiggled orbit is 
included as additional 
circumference

• Linear focusing is compensated 
with two families of quadrupoles



Tunes vs. Amplitudes (CDR) 

-410

-616

-4903

Ideal
Wiggler

-36480-1153

8754-616

-33320-4903

Full 
Wiggler

Linear 
Wiggler
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Calculated with nonlinear map and normal form using LEGO & LIELIB:
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Benchmark of Codes Using 
Dogbone Damping Ring (DESY)

Curtsey of Jeremy Urban 

simulated using LEGO



Conclusion

• A simple and physical presentation is introduced to parameterize
three-dimensional field of wiggler, including the end poles. The 
modes in the model have direct relation to the wiggler parameters.  

• Hybrid symplectic integrators are developed to integrate through 
wiggler magnets. They are much simpler than the conventional 
explicit ones and therefore much fast for tracking. Because the 
special form of the Hamiltonian, they are still analytically solvable 
and hence high-order maps can obtained using the traditional 
differential algebra method. 

• Full nonlinear wiggler designed at DESY, degrades the dynamic 
aperture in the lattices of damping rings designed for the 
International Linear Collider. However, we demonstrated that the 
wiggler problem is not a fundamental limitation of the lattices and 
it is solvable with more engineering efforts.

• Using non-interlaced sextupoles in damping rings is very effective 
way to increase the dynamic aperture. We believe that the dynamic 
aperture in these newly designed rings are adequate once the 
wigglers are improved in terms of field quality.     


