Wigglers vs. Undulators

H.-H. Braun, CERN

- Introduction
- Energy spread
- Horizontal emittance
- Vertical emittance
- Summary

Introduction

Assuming

- A ring with damping and emittances dominated by SR from long wigglers
- Wigglers with field $B_Y = B_0 \sin (2\pi z/\lambda_W)$ and $N_W >> 1$
- No technical limitations for choosing B_0 and k_U

What are the best choices of B_0 and k_U to minimise emittances ?

Mean radiated power $P_W = \frac{r_0 c^3 e^2}{3m^3 c^6} E_e^2 B_0^2$ depends only on beam energy and B_0

but photon spectrum and number dependence on λ_W

? damping time independent of λ_W , quantum excitation depends on λ_W

3/10

Emittance calculation

$$\boldsymbol{e}_{HN} = \frac{\boldsymbol{t}_{H}}{4Cm^{2}c^{4}\boldsymbol{g}} \oint \dot{N}_{Phot} \left(\left(\boldsymbol{g}_{X}\boldsymbol{h}_{X}^{2} + 2\boldsymbol{a}_{X}\boldsymbol{h}_{X}\boldsymbol{h}_{X}' + \boldsymbol{b}_{X}\boldsymbol{h}_{X}'^{2} \right) \left\langle E_{Phot}^{2} \right\rangle + \boldsymbol{b}_{X} \left\langle E_{Phot}^{2} \boldsymbol{x}^{2} \right\rangle \right) ds$$
$$\approx \frac{\overline{\boldsymbol{b}}_{X}}{2mc^{2}P_{W}} \left(\frac{K}{\boldsymbol{g}} \overline{\cos^{2}\left(\frac{2\boldsymbol{p}}{\boldsymbol{l}_{W}}z\right)} \dot{N}_{Phot} \left\langle E_{Phot}^{2} \right\rangle + \overline{N}_{Phot} \left\langle E_{Phot}^{2} \boldsymbol{x}^{2} \right\rangle \right)$$

$$\boldsymbol{e}_{VN} \approx \frac{\overline{\boldsymbol{b}}_{X}}{2mc^{2}P_{W}} \overline{\dot{N}_{Phot}} \left\langle E_{Phot}^{2} \boldsymbol{y}^{2} \right\rangle$$

$$\frac{\Delta E}{E} = \sqrt{\frac{\dot{N}_{Phot} \langle E_{Phot}^2 \rangle}{4P_W mc^2 g}}$$

$$\dot{N}_{Phot}$$
, $\langle E_{Phot}^2 \rangle$, $\langle E_{Phot}^2 ?^2 \rangle$, $\langle E_{Phot}^2 ?^2 \rangle$ have to be calculated from $\frac{dN_{Phot}}{dE \, dO}$,

straight forward for K >> 1 and K << 1, but difficult for K \approx 1.

WIGGLE 2005, 22 Feb. 2005

Energy spread

A. Hofmann, SSRL-ACD note 41,1986

Horizontal Emittance

Z. Huang and R. Ruth, PRL Vol 80, p. 976, 1998

Vertical Emittance

Product **e**_{HN} **e**_{VN}

Optimum wiggler wavelength

$$\boldsymbol{I}_{W\,Opt} = \frac{2\boldsymbol{p}\,m\,c}{e}\,\frac{K_{Opt}}{B_0}$$

Summary

- Energy spread increases for small λ_U and is constant for large λ_U
- Vertical emittance increases for small λ_U and is constant for large λ_U
- Horizontal emittance increases for small λ_U and is constant for large λ_U
- Transverse emittance product is minimised for K ~ 0.5 1
- For fixed B_0 , λ_U and $\beta_{X,Y}$ normalised equilibrium emittances are independent of energy