Beam measurements with wigglers at $DA\Phi NE$

M.E. Biagini, INFN-LNF

- DAPNE has 2 Interaction Regions hosting 3 detectors:
 - KLOE in IR1
 - DEAR and FINUDA sharing IR2
- 3 different lattice configurations
- Non linearities were first detected during KLOE operation
- First n.l. measurements in Dec. 2000

DAΦNE

$DA\Phi NE$ non linearities

- Detected by measuring a non linear tune shift with energy without sextupoles
- Responsible for dynamic aperture reduction, also affecting beam-beam performances

Investigations

- Known sources of non linearities: sextupoles,
 "C" correctors
- Wigglers, due to their limited pole width, can be also source of non linearity
- Checked wiggler effect by measuring tune shift vs beam position, with x-orbit bumps at the wiggler location (y aperture not sufficient)
- Beam decoherence and tune shift with energy also measured

DA PNE Wigglers

- 4 wigglers for each ring
- Used to increase radiation
 damping and quantum fluctuations
- $B_{max} = 1.85 T$, $L_w = 2 m$
- Beam trajectory: x = 2.5 cm peak-to-peak
- Wiggler axis displaced w.r.t. machine axis

"Theoretical" closed orbit bump in wiggler with 4 horizontal correctors

The energy change induced by the correctors was corrected by changing the RF frequency. Sextupoles were OFF WIGGLE 2005, 21-22 Feb. 2005

Horizontal tune vs X amplitude

e⁺ ring

Average ΔQ value is comparable in the 2 rings

 M. Preger, DAΦNE M.A.P., Jan. 2001

 WIGGLE 2005, 21-22 Feb. 2005

Horizontal tune fits well with a quadratic behaviour, typical of an "octupole-like" term. Slight displacement at x=0 due to residual orbit displacement at wigglers

Vertical tune vs X amplitude

- Strong octupole-like term measured in wigglers, coming from decapole term in wiggler field combined with oscillating trajectory
- Vertical tune showed a sextupole term. This may be explained by contributions from nearby bending magnets
- Designed lattice with wigglers OFF and similar optical functions in the arc to quantify wigglers contribution
- Wiggler OFF lattice more sensitive to transverse beam instabilities because Landau damping induced by wigglers was suppressed and damping time was

Fines longer WIGGLE 2005, 21-22 Feb. 2005 Tune shift vs energy with sextupoles OFF, wigglers ON & OFF

Vertical tune, wiggler ON & OFF: small change, β_v in wigglers is small, while β_v in nearby dipoles is large WIGGLE 2005, 21-22 Feb. 2005 Horizontal tune, wiggler ON & OFF: mostly linear for wiggler OFF, with a small contribution from dipoles

 Wiggler contribution isolated by subtracting measurement with wigglers OFF from the corresponding one with wigglers ON: octupole term

 $\begin{array}{l} \Delta Q_{\rm X} / \Delta x^2 \approx -127 \ {\rm m}^{-2} \\ \Delta Q_{\rm y} / \Delta x^2 \approx +28 \ {\rm m}^{-2} \\ (\beta_{\rm x} / \beta_{\rm y} \approx 3) \end{array}$

MAD constant: k₃ ≈ -1000 m⁻³ (assuming <β>≈3m) for each wiggler

Simulation

	Meas	MAD	Meas	MAD	
	×	×	у	у	Comparison
Δν/(Δx)² (m ⁻²)	-129	-122	+31	+38	MAD model

Simulated x-bump in one wiggler

0.24 $K_{1}^{0} = -1000 [m^{3}]$ 0.220.2Lines: MAD simulation of the c.o. bump including 0.18octupole term in wigglers 0.160.14 4x [mm] 0.12-5 -15 -10 0. 5. 10

Comparison with

C.Milardi et al, PAC2001

Tune shift with amplitude

 Parameter c₁₁, measuring the horizontal tune shift with particle amplitude, gives cubic nonlinearity strength (M. Zobov, DAΦNE Tech. Note G-57):

$$\Delta v_{x} = 2c_{11}J_{x}$$

 c₁₁ can be computed by fitting the turn-by-turn signal envelope from beam tracking system

c₁₁ slightly negative is better for dynamic aperture and beam-beam interactions

Beam decoherence

 Measured by a dynamic tracking system: coherent βtron oscillation excited by kicking the beam with injection kicker and storing turn-by-turn displacement (A. Drago et al, DIPAC 2001)

Cures for non linearities

- Lowered β_x in wigglers
- Installed 3 octupole magnets/ring
- Optimized sextupole settings
- Modified wiggler poles (M. Preger's talk)

e+ ring tune shift vs energy before (KLOE) and after (FINUDA) wigglers upgrade (2003)

c₁₁ for different configurations

CONFIG.	c ₁₁ (m ⁻¹)	Notes	CONFIG.	c ₁₁ (m ⁻¹)	Notes
KLOE 2000	-600	W ON, SXP ON	DEAR 2002	-450	W ON, SXP ON, OCT OFF
KLOE 2001	+400	W OFF, SXP OFF	DEAR 2002	-300	W ON, SXP ON,
KLOE 2001	+200	W OFF, SXP ON	FINUDA 2004	-300	W ON, SXP ON, OCT OFF
KLOE 2001	-300	W ON -15%, SXP OFF	FINUDA 2004	-70	W ON, SXP ON, OCT ON
KLOE 2001	-170	W ON, Lower β_x^w	KLOE 2004	-140	W ON, SXP ON, OCT OFF
KLOE 2002	-80	W ON, SXP ON	KLOE 2004	-50	W ON, SXP ON, OCT ON
KLOE 2002	~0*	W ON, SXP ON, OCT ON	KLOE 2004	-10	W ON, SXP ON, OCT ON, high α_c

- Negative c₁₁ provides Landau damping, beneficial to coherent beam instabilities
- Positive c₁₁ affects BB causing beam blow-up and lifetime degradation
- The cubic non linearity changes widely, depending on β functions and c.o.
- Larger negative contribution to c₁₁ comes from wigglers
- Sextupoles contribution to c_{11} is also negative but smaller
- Octupoles give positive contribution to c₁₁
- Combined effect of cubic n. l. and bb depends on
 BB tune shifts, n.l. strength and sign of c₁₁
 WIGGLE 2005, 21-22 Feb. 2005

Decoherence with octupoles

FINUDA 2004

•3 octupoles were installed in order to compensate for wiggler octupole-like effect, providing a knob to control c_{11}

•Octupoles are used in collision to optimize peak luminosity, lifetime and backgrounds

•Measurement of e⁺ beam decoherence for different

WIGGLE 2005, 21-22 Feb. 2005

octupo e settings

KLOE December 2004 Octupoles ON and OFF

Beam Decoherence

Tune Shift with Amplitude

WIGGLE 2005, 21-22 Feb. 2005

M. Zobov

Comparison of 2 lattices

Conclusions

- The 8 wigglers turned out to be the main source of DAPNE non linearities
- Lattice modifications and insertion of octupoles have been beneficial
- Wiggler pole modification strongly reduced non linearities
- Non linearities are smaller and under control for the present operation
 WIGGLE 2005, 21-22 Feb. 2005