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Abstract

For beam dynamical simulations of insertion devices
BESSY developed methods which are based on gen-
erating functions. These routines are symplectic and
very fast. A summery of the work done on this subject
is presented. Additionally, effects of end pole fields on
beam dynamics are discussed, focused on the sextupole
like field content of the insertion devices.

THE MACHINE OPTICS

BESSY 1II is a double bend, 16-cell, low emittance
electron storage ring, see the layout in Fig.1 and the
main parameters in Tab.1. Presently there are 15 in-
sertion devices (ID) in operation, Tab. 2. The optics
is designed in such a way, that strong superconduct-
ing insertion devices can be operated in the ring. Each
second straight section of the ring is a low beta sec-
tion, where strong IDs are placed, Fig.2. At these
places the horizontal and vertical beta functions are
focused to about 1 m. In this way, the optics distor-
tion by strong IDs are kept small and the emittance is
damped to about 70% of its original value. For beam
injection the gaps of the IDs are opened, the fields of
the superconducting IDs are not changed. Depending
on the gap or field strength of the individual ID, a feed
forward correction for residual orbit distortion (addi-
tionally to the regular orbit correction) and tune shift
1s set up.

TRACKING WITH GENERATING
FUNCTIONS

For beam dynamics studies of the storage ring op-
tics tracking calculations across IDs are required. The
IDs are composed by 3-dimensional magnetic fields.

*Work supported by the Bundesministerium fiir Bildung,
Wissenschaft, Forschung und Technologie and by the Land
Berlin.

Table 1: BESSY II storage ring parameters

nom. energy 1.7 GeV
nat. emittance 5.5 nmrad
circumference 240 m
rf-frequency 500 MHz
typ. inject. current 250 mA
nat. chromaticity &;, & | -52, -26
long. damping time 8ms
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Figure 1: Layout of the BESSY II storage ring

It would not be sufficient to model them with the
usual 2-dimensional magnetic multipoles, where stan-
For the map-
ping one would like to have a routine, that transforms

dard mapping routines are available.

a given set of initial, transverse particle coordinates
to a set of final coordinates over a specified longitu-
dinal section. Different to more common integration
methods, which are based on ’infinitesimal’ short in-
tegration steps, BESSY developed several types of ID
tracking routines based on generating functions (GF).
Most of this work is published in the proceedings of

Table 2: Insertion device parameters (U=planar 1D,
UE=helical ID, sc=superconducting 1D, WLS=wavelength

shifter, mPW=multipole wiggler, *= vertical tune shift)

name devices | length | Byyg,-field
U-139 1 1.39m 1.47T
U-125 2 3.87Tm 1.36T
U-49 2 4.10 m 0.80T
U-41 1 3.25m 0.66 T
UE-56 2 3.36 m 0.777T
UE-52 1 4.00 m 0.74T
UE-49 1 3.09 m 0.71T
UE-46 1 3.24m 0.68T
sc-WLS 1 0.008* 46) T
sc-WLS 2 0.02* 6.8 T
sc-MPW 1 0.075* 7T
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Figure 2: The BESSY II machine optics with its
high and low beta straights. @Q,D,S indicate types of
quadrupoles, dipoles and sextupoles, respectively.

the PAC and EPAC, in this note a summary of this
work is presented. !

The advantage of the GF is, that these methods are
principally valid and fully symplectic for finite step
lengths. A larger part of an ID or even the complete
ID can be taken in a single step. This makes these
routines very fast, as long as the transformation be-
comes not too nonlinear. One has no information on
the particle position in between the steps, but this is
acceptable for most of the tracking situations, where
one is not interested in the particle positions inside the
device. However, to achieve the GF is a more com-
plicated way, as is shown in the next sections. The
physics behind the GF is based on the Hamiltonian
mechanics and can be found in text books, such as [2].
We present a short recipe, how this method is set up
and applied. A comparison of the computing speed
and accuracy of these routines is given in [3].

Numerical Generating Function

The first method discussed will be the numerical GF
[4], [5]. This approach is very well suited for strong,
superconducting devices. The magnetic field of these
devices can be derived from a 3-dimensional magnet
code or from magnetic field measurements. If only 2-
dimensional parts of the field are known, it has to be
completed to a 3-dimensional field. This can be done
by a Fourier like expansion of the scalar potential V'
by harmonics of the type

V=— Z(Bo/k'yi) cos(keix) sinh(ky;y) cos(kz2), (1)

where for the wave numbers the relation k2, 4+ k2, = k;l
holds. The coordinates are taken from a Cartesian sys-
tem, where z, y and z are the horizontal, vertical and
longitudinal axes, respectively. The field expansion by
("Halbach’) harmonics satisfies the Maxwell equations.

An integration routine is used to track about 1000
particle orbits across the device. The orbits are se-
lected in a range which covers the expected dynamic

1Qur first paper on this subject was published 1984 [1], where
this method was applied for beam dynamics studies in FFAG
accelerators.

aperture. The result will be a set of initial, trans-
verse particle coordinates (z;, Y, pws, Dyi) taken at the
longitudinal position z; and a set of final coordi-
nates (X;, Yy, Pyp, Pyy) taken at Z;. The coordi-
nates are described by position (Cartesian system)
and canonical momenta. The relation between the
slope of the trajectory (X’,Y”’) and the canonial mo-
menta is given by P, = Ay + X'/V14 X2 4+Y'? and
P, = A, + Y'/VT+ X2 Y2 For the vector po-
tential (As, Ay, A;) a scaling by the magnetic rigid-
ity Bp is applied and we will use the abbreviation
(A = As/Bp, Ay = Ay/Bp, A, = A./Bp). One
could imagine to perform a polynomial fit to the re-
sulting coordinates, which maps the initial values to
the final ones in a single step, but this would lead to
a non-symplectic result. The method of the numeri-
cal GF does apply this idea, but transform it into a
symplectic mapping routine.

The set of coordinates is separated into two, dis-
junctive chosen subsets. Each one contains half of the
initial coordinates and half of the final coordinates.
Details of this splitting depend on the type of GF
which 1s used. There are four types common, let us
take the GF named F5. This function Fs depends on
the initial position and the final momentum coordi-
nates, Fy = Fy(x;,yi, Pop, Pyr). A different type of
GF would depend on a different subset of coordinates.
It is a unique property of the GF that the complemen-
tary subset of coordinates can be derived from the GF
by the following relations,

X; = 0Fy/0Py;,
Y = 0Fy/0P,;,

pyi = 0F5/0y;.

The GF itself needs still to be constructed in an ap-
propriate way.

There is some freedom in setting up the explicit form
of the GF. In case of the numerical GF we chose a
polynomial fit of the type

M

>

k+l+m+n

FZ(xiayianfaPy ): aklmnxfyi' :cn‘Lf ;f (3)

The coefficients ajym, can be fitted by the complete
set of coordinates and by the equations (2).

By taking a 2nd order expansion (M=2) of Fy and
applying equs. (2), a linearly coupled equation system
of the coordinates is obtained, which can be solved for
the linear transfer matrix. This would be sufficient to
model the quadrupole focusing effects of the 1D, but
one would like to have at least octupole terms included.
Therefore, we take M =4 or M =6 for the fit as a good
compromise, where M =4 starts to model octupole like
effects. About 60 coefficients agyn, are required, if
symmetry properties of the ID are included, such as
midplane and reflection symmetry.

The implicit coordinate relations derived from F5
are solved by a Newton fit routine. The resulting



mapping routine is symplectic, independent how ac-
curate the polynomial coefficients agim,, are derived.
Once the routine is set up, it 1s extremely fast. For
each superconducting ID we tailor a GF describing its
mapping properties. These IDs are typically strong
focusing devices of minor nonlinear properties. The
3-dimensional, harmonic field expansion and the cal-
culation of the numerical GF 1s part of the program
package "'WAVE’ [6]. The numerical GF can be applied
to a varity of fields, as long as the transformation be-
comes not too nonlinear.

Analytical Generating Function

The second method is based on a Taylor expanded,
analytical GF [7], [8],[9],[10]. We consider a mapping
from the longitudinal position z; to Z;, positions in
between are written in capital letters and without in-
dex 7 or f. We assume, that the vector potential
can be expressed analytically by not too complicated
functions. Complicated potential expressions will limit
this method. This can be inserted into the Hamilton-
Jacobi-Equation (HJE) [2],

H(X,Y, Py, P,)) 4+ 0F/0Z =0, (4)

where H is the Hamiltonian function. The Hamilto-
nian of a charge in the magnetic field, expanded to
second order is given by

H = (P = A:)2/2 4 (Py - A)/2— A (5)

For the GF we select again Fb.

The coordinate transformation as described by the
HJE is of special character. It is a kind of back-
ward transformation, from the particle coordinates
(X,Y, Py, P,) at position Z to the initial position z;.
One needs to distinguish between initial (index ¢) and
final (index f) coordinates and between new’ and ’old’
coordinates. The HJE describes the transformation
from the old, Z-dependent position to the new, con-
stant position which is the initial one. The Hamilto-
nian of the old coordinates is explicitly given in the
HJE, the Hamiltonian of the new (constant) coordi-
nates is zero. The GF connects the new and the old
coordinates in a mixed way as discussed above. The
new particle coordinates of the transformation are our
initial coordinates (&;, ¥i, Pei, Pyi), the old ones will fi-
nally become our coordinates (X¢,Yy, Poy, Pys) it Z
is approaching 7.

As in the numerical case, the GF of type Fy de-
pends on the mixed coordinates, old position coordi-
nates (no index) and new momenta (index ¢), Fp =
F5(X,Y, pwi, pyi). The momenta P, P, in the Hamil-
tonian can be expressed by F5, and the HJE becomes

(OF2/0X — Ap)? )24 (OF2/0Y — Ay)?/2 6
~A, +0F2/0Z =0 . (6)

The resulting HJE is an equation, which is of first
order in three different partial derivatives of Fs. To
solve this equation for I, we choose as an Ansatz a
series expansion of the type

Iy = Z flmnpl@'zpzzxga (7)

l,m,n

where the coefficient f,,,, are dependent on the posi-
tion coordinates (X,Y, 7). The fin, are calculated by
a recursion approach. The recursion is started with a
drift transformation,

FP Y = Xpoi + Yy — Z(p2 +92)/2. (8)

The required longitudinal integration of the coeffi-
cients is performed over the full range of 7, from z;
to Zf .

The variable 3 can be chosen as 3 = 1/Bp, the
common scaling factor of the vector potential. But in
most cases, there are more common factors in the vec-
tor potential components, which can be included into
z3. The special choice of z3 ~ 1/Bp allows us to solve
the differential equation by a recursion formula. This
is done with a short REDUCE [11] routine, see ap-
pendix. The expansion order is limited by the increas-
ing size of the fi,,, terms and by the expansion order
of the Hamiltonian of equ.(5). A 4th order expansion
would require an improoved Hamiltonian. We could
not find a recursion formula, based on the expansion
with respect to the four coordinates (XY, Py, P,).

As an example the general solution in 2nd order,
where the vector potential is replaced as far as possible
by magnetic field expressions, is given by,

foor = [A.dZ

Jooo= = J((J BydZ)* + ([ B.dZ)?)dZ/2
fin= [ [Bydzdz (9)
forr = —ffodZdZ

fioo = Xy, Jooo = —7¢/2,

fOlO = Yf, fozo = —Zf/Q.

The double integration of a function g = ¢(7Z) has to
be performed like

//gdZdZ:/ZZf /ng(Z’)dZ’dZ. (10)

Beside the fyp; term, this result is independent on the
choice of the vector potential. The fyp1 term is used to
calculate the momentum. When the canonical momen-
tum is turned into the orbit slope (X', Y”) the vector
potential is required and together with the A, term
the result becomes independent on the explicit choice
of the vector potential, for example, in lowest order

X' = Py— A, =0F/0X; — [(0A,)07)dZ
230f001/0Xs — [(0A,/02)dZ + ..
[(0A,)0X; — 0A,/02)dZ + ...

= — [ By/BpdZ + ...



The leading order for X’ and the term fi9; are named
the first and second field integrals of an ID (similar for
the B, field, see next chapter on end pole effects).

The general, 3rd order solution of Fy together with
the explicit, device specific vector potential are used
to set up the FORTRAN routines. It solves the im-
plicit equations (2) of the coordinates. They could also
be solved analytically by two second order equations
in the momenta, but a Newton fit routine seems to
be faster and of higher accuracy. The integrated fi,,
terms become simplified in case of the periodic char-
acter of the longitudinal fields of the IDs, it averages
over oscillating terms. Once the FORTRAN routine
for a generic type of ID is set up, 1t can be used for
all devices of this type. One only needs to pass the
characteristic parameters to the routine, such as the
3 wave numbers k., ky, k., max. field strength in the
midplane, number of periods and particle energy in
case of a planar device as discussed below.

As an example, the GF of the planar device ex-
panded to 3rd order is given [9] with the leading term
of the scalar potential of eqn. (1). The result is ex-
pressed as

F = Foo+ Fiopei + Foipyi + Faop?;
5 (11)
+ 1 peibyi + Foapy,,
where the expansion with respect to x3 is included into
the Fjj-coeflicients, Fj; = fijo+fij1zs+ fijoxi+ fijax3,
with f”k =0fori+ 54k > 3. In this example the
variable x3 is chosen as = 1/(k;pmin), Where pp, is
the minimal orbit curvature in the midplane of the
ID. Typical values of k, are 60 1/m and of p,,;,, =5 m,
yielding 25 = 1/300 or even smaller. Depending on the
device strength and period length, the mapping can
be taken over n multiple integers of the longitudinal
period length ., Z; = nA,.

By applying the abbreviation ¢, = cos(keX¢), 5. =

sin(keX¢), ¢y = cosh(k,Yy) and s, = sinh(k,Y}) the

Fij-coefficients are given as,

Foo = —Zpa3((kycacy)® + (kososy)®)/(2ky)?

+ 2 agsecyka((kosy)® — (kyes)®)/(2 k’zk’)
Fro= X;-— Zz$%kxsxcx((k Cy) g)/( )
For= Y +Zf$:23ky5ycy((kzcx) + k3)/(2ky)?
Py = —Zpassycp(ky +k7)/ (ko ky)

Fog = —Zf/2 + fogkxcysx/k’z
—Z1[2 — Zyaskpcyss k.

e
I

(12)
This result can be used, to derive an approximated
Hamiltonian of the transformation. Because the inte-
gration was performed over multiples of the longitudi-
nal period, the result will be an averaged Hamiltonian,
not including oscillating terms. The Hamiltonian is
derived from the HJE, H = —0F,/0Z, where F; is
taken from the expanded solution. For simplicity, we
take for Fy only a drift transformation plus the Fyg

term (2nd order in pei, pys, £3),

Fo = fooaxl + Xpai + Ypyi — Z(p2; +P@2ﬂ)/2~ (13)
The mixed coordinates have to be replaced by coor-
dinates taken at position Z. Therefore, we calculate
P, = 0F5/0X = pg; + ... in first order and similar for
Py. The leading terms of the averaged Hamiltonian

are

H= (P4 P)))2+ ((kycacy)®

+(kasesy)?)/ (2kykz pmin)®,
in agreement with the Hamiltonian derived in the note
[12] by L. Smith. The leading 3-dim multipole content
integrated over one period can be derived from the
expension of this Hamiltonian to 4th order,

(P24 P2)/24 (14 (kyY)? + (ko X)?
+(kyY)H/3 = (kykoY X)? + (ko X)*/3)
/(kapmin)z

(14)

H =

(15)
yielding the quadrupole strenth from the 2nd order
terms and the octupole strength form the 4th order
terms.

A second FORTRAN routine was set up to simulate
helical insertion devices of the APPLE II type [13]. For
this an analytical representation of the field is required,
which can be derived from the scalar potential, V' =

Bo(Vi + Vo + V5 + V4)/8, with

Vi =+(etFoe,_ Jky +et*Y/k, ).y
Vo = —|—(e+ Wepy [ky +ethY [k, e, (16)
Vs = —(e *vYeuy fhy +e %Yk, ).y
Vi = —(e‘kyycx_/k’y +e kY ke, _,

where, c;+ = cos(ky (2 + xg)) and e,4 = cos(k,z +
$/2)). The individual helical ID is characterized by
the parameters By, xo, ke, ky, k., shift parameter o
and the number of periods. The helical potential is
an example of a more complicated field, which can be
handled with the analytical GF expansion.

END POLE EFFECTS

The end poles consist of only a few poles of the whole
ID, but these poles have to provide special tasks. They
guide the closed orbit from the outside of the ID to the
periodic closed orbit inside of the ID and back to the
outside. This is properly done, if the first and second
field integral I1, I» are zero,

+L +L z
/ Bydz =0, / / Bydz'dz =0,
-L -L J-L

and similar for the B,-field. A single pole could give
a strong kick to the beam, but the overall effect is
small, if the condition of the field integrals are satisfied.
The first integral states, that the average field should
be zero to avoid a transverse kick to the transferred
beam. The second integral poses constrains on the

(17)



distribution of the field, to avoid a transverse shift of
the beam. The conditions of equ. (17), if violated, can
have a strong impact on the nonlinear dynamics of the
beam. This is discussed in this chapter and shown for
the example of the sextupole content of the ID poles,
[13].

A typical ID pole introduces a strong sextupole-like
field to the beam optics. If the ID poles are strictly
periodical and alternating in sign, their strength aver-
aged over two adjacent poles vanishes. The end poles,
in general, are different to the periodic part of the ID.
From the potential function of the field, terms which
characterize sextupole like fields can be derived (at
r=y=0):

o3V ]ox3,
93V ) dxdy?

93V /0x2 0y,

33‘//33/3. (18)

In case of a polynomial expansion, these fields increase
with the transverse position coordinate in the same or-
der as the two-dimensional sextupole fields. Because
of the 3-dimensional character of the ID fields there
are 4 terms, compared with two expressions (skew and
normal) in the two-dimensional case. For the ID one
expects an oscillation of the strength of these terms
along the beam axis with an average value of zero. The
amplitude of these oscillations could be large, for ex-
ample the term 93V /9y integrated over half a period
could yield as much as 80 T'/m for a typical helical
ID of the BESSY ring. For comparison, the correc-
tion sextupoles of the BESSY II optics reach values of
50 T'/m. With respect to these fields the ID can be
considered as an alternating series of strong sextupole
kicks.

To find out the conditions, that the effects of the
sextupole fields on the beam is small, Collins ’dis-
tortion functions’ [14] will be applied. These func-
tions describe the deformation of the beam envelope
by sextupole fields. Instead of 5 distortion functions
for normal two-dimensional sextupoles there are now
7 in case of an ID without skew terms. If only a single
sextupole-like kick as a source of distortion i1s consid-
ered, then the distortion functions B; (i=1-7) become
very simple, they are all of the type:

B; = %Si(z) cos(d; + dio — ¢;)/ sin(io),
were the phase around the ring is 2¢;9 and B; is eval-
uated outside the ID at ¢;. The longitudinal posi-
tion z and the phases are defined in such a way that
z = ¢; = § = 0 at the starting (or reference) point.
All phases are scaled, dependent on the type ¢ of the
distortion function. There are 4 different d;-scalings:

(19)

62 == 3¢l‘a
64,7 == 2§0~y - sﬁl‘a

3,5 = Pa,

- . 20
63,6 == Q@y + Ly ( )

and similar relations for skew terms (exchange z and
y). Yo and @, are the unscaled horizontal and vertical

betatron oscillation phases. Similar relations are valid
for ¢; and ¢;9. Also the sextupole kicks are scaled.
The strength of the kick is integrated over one pole
(for example, [ 33V/8?2dydz = AzVyy), and multi-
plied by scaling factors depending on the local beta
functions:

51,2(2) = %szyxxﬁx\/ﬁ_x
s3.4(2) = %Aszyyﬁx\/@ (21)
s5,67(2) = 5AViyeo By Be

For the evaluation of a special B;, sextupole kicks and
phase functions with equal indices have to be com-
bined.

The distortion function B; of equ. (19) can be de-
composed into a cos(¢; —@io)- and a sin(@; — @i )-wave.
The amplitudes A. and A, of these waves for an ex-
tended source s;(z) like the ID are proportional to the
integrals

A, ox fID si(z)cosd;dz  and (22)
A, x fID si(z)sind;dz.

One would like to have these amplitudes equal to zero
to minimize optics distortions. If the phase advance
over the ID is small, sin §; is proportional to z and s;(z)
can be replaced by the unscaled sextupole strength
s(2) = Viyyy, Vyye, Vyeo and Vigs, respectively, re-
garding the beta functions as constant. The condition
for vanishing amplitudes A, and A; can be further
simplified by applying partial integration:

A, f_LL s(z)dz =0,

L z ’ ’ _ (23)
Agm [7, 7, s(2)dZ'dz =0,
yielding a similar presentation as for the 77 and 75 inte-
grals of equ. (17). In case of a cos(k,z)-dependency of
the ID-fields, both, the field integrals 1, /> and the in-
tegrals A., As are naturally matched, which is not the
case if the ID starts with a more sin(k,z)-dependency.
IDs with a more complicated field distribution like he-
lical IDs should be carefully matched.

Figs. 3 and 4 show simulations with a helical 1D,
described by the potential function of equ. (16). In
Fig. 3 the distortion function of type B; for i=1 is
shown. In this case all scaled phases can be replaced by
the appropriate horizontal betatron oscillation phase.
The distortion generated by the sextupole like kicks of
the ID is plotted over one lattice cell. The dashed line
shows the situation if no end poles are applied. The
distortion is large and spreads out all over the cell.
The red line in Fig. 3 shows the same configuration
but with matched end poles, it is clearly seen that the
distortion is nearly perfectly enclosed in the ID, like a
closed sextupole bump.

These two situations are compared in Fig. 4 on
the basis of tracking simulations of the vertical phase
space. A particle is started in the straight section with
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Figure 3: Distortion function B; for the matched (red)
and unmatched case along a BESSY unit cell. The
simulation was performed for sextupole fileds intro-
duced by one ID of 12 poles and no further sextupoles
in the lattice.
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Figure 4: Vertical phase space plot for the matched
(red) and unmatched case.

1 em amplitude in both planes and tracked for 1000
turns. The unmatched case (dots) shows a large smear
due to the sextupole fields of the ID. The effect of a
good matching is clearly visible, the phase space figure
shows nearly a perfect circle (red color). The match-
ing is achieved by end poles on either side of the ID,
each one composed by two half poles. The fields of
the matching poles are derived from the potential V'
of equ. (16). At the entrance side for the first half pole
the potential —1—%‘/ is applied, for the second half pole
—%V i1s used. At the exit side the sequence is reversed,
using —|—%V and —%V. Inside the periodic part of the
ID the fields are derived from V. Applying these end
poles both, closed orbit and distortion functions, are
well matched.

SUMMARY

The GF approach for beam dynamical simulation of
ID effects 1s a fast and symplectic tool. It can be well
applied to 3-dimensionals magnetic fields. Methods
for a numerical routine and for an analytical routine
are set up. To achieve good dynamic apertures the end
poles of the IDs have to be designed to match properly
the requirements of the field integrals.
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APPENDIX:
REDUCE-code for 3rd Order Generating Function of
Planar 1D

%definition of potential:

v:=—(b0/ky)*cos (kx*x)*sinh(ky*y)*cos (k*z);
ax:= —-int(df(v,y),z) ;

ay:= int(df(v,x),z) ;

az:=0 ;

%definition of series:

operator f ;

f2:= 0 ;

ord := 3 ;

for ic:=1:ord do for ix:=0:ord do

for iy:=0:ord do for i3:=0:o0rd do

if ix+iy+i3=ic then

<< depend f(ix,iy,i3),X,Y,z ;

f2 = f2 +
f(ix,iy,13)*pix**ix*piy**iy*x3**i3 >> ;

%initial values of the series:
£(1,0,0) := X ; £(2,0,0) := -z/2 ;
£(0,1,0) :=Y ; £(0,2,0) := -z/2 ;

%limitation of terms:

for ix:=0:ord+1 do for iy:=0:ord+1 do
for i3:=0:ord+1 do if ix+iy+i3>ord then
let pix**ix*kpiy**iy*x3%*i3 = 0 ;

Y%definition of Hamiltonian:
h:=(Pfx-x3*ax)**2/2+(Pfy-x3*ay)*+2/2-x3*az;

%substitution of the momenta:
h:=sub(Pfx=df (£2,X),Pfy=df(£2,Y),h);

%Hamilton-Jacobi equation:
hj := h + df(£2,2) ;

%iterative solution:

for ic:=1:ord do for ix:=0:ord do
for iy:=0:ord do for i3:=0:o0rd do
if ix+iy+i3=ic then

<< term :=
coeffn(coeffn(coeffn(hj,pix,ix),piy,iy),x3,13);
if term neq O then <<

soll := solve(term=0,df(f(ix,iy,i3),z)) ;

sol2 := rhs(part(soll,1)) ;

sol3 := int(so0l2,z) ;

f(ix,1iy,1i3) := sol3-sub(z=0,s013) ;
write " f£",ix,iy,i3,"= ",f(ix,1iy,1i3) ;
>> >>

%resulting generating function:
f2 ;
end;




