

Double-Chooz Neutrino Experiment

Carmen Palomares Ciemat (Spain) For Double-Chooz Collaboration

Neutrino Oscillation

Vulcano08 30 May

3

Θ_{13} at nuclear reactors experiments

\overline{V}_e disappearance searches

 $P(\overline{v}_e \rightarrow \overline{v}_e)$ Independent of δ -CP, weak dependence on Δm_{12}

Matter effects negligible due to the small distances and the v energy O(MeV)

- Unambiguous measurement of Θ₁₃ complementary to beams
- The only limitation comes from statistical and systematic errors
- These experiments must be carried out on a short time scale to provide an input for future beams

1.2 $\sin^2 2\theta_{13} = 0.1$ E=4MeV KamLANT -> 74 0.8 $P(\overline{v}_{e} \rightarrow \overline{v}_{e}) = 1 - \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{13}^{2} L}{1 -$ 0.6 0.4 mal Hierarchy 0.2 Inverted Hierarchy 0 0.1 10 100 1000 L(km)

Neutrino detection at nuclear reactor experiments

Backgrounds

Accidental:

- e⁺-like signal: radioactivity from materials and surrounding rock.
- n signal: n from cosmic µ spallation, thermalized and captured on Gd.

Or another radioactivity event

Correlated:

- fast n (by cosmic μ) recoil on p (low energy) and captured on Gd
- long-lived (⁹Li, ⁸He) β-decaying isotopes induced by μ

Double Chooz Concept

To look for non-zero values of Θ_{13} Beyond the previous systematic limitations:

- 1. Two detectors to reduce uncertainties to the reactor flux
- 2. Identical detectors to reduce errors due to detector acceptance

Improving CHOOZ

CHOOZ: $R=N_{meas}/N_{exp} = 1.01 \pm 2.8\%$ (stat) $\pm 2.7\%$ (sys)

Statistical error

	CHOOZ	Double Chooz	
Target volume	5.55 m3	10.3 m3	
Data taking period	Few months	3-5 years	
Event rate	2700	Chooz-far 40000/3y Chooz-near > 1 106/3y	
Statistical error	2.8%	0.5%	

Systematic errors

	CHOOZ	Double Chooz
Reactor uncertainties	2.1%	
Number of protons	0.8%	0.2%
Detector Efficiency	1.5%	0.5%

Improve detector design and knowledge

 Large S/B detector design (shielding and radiopurity materials) and increasing overburden

The Double Chooz Collaboration

Spokesman: Hervé de Kerret (APC)

France: APC Paris, CEA/Dapnia Saclay, Subatech Nantes, Strasburg Germany: Aachen, MPIK Heidelberg, TU München, EKU Tübingen, Hamburg Spain: CIEMAT Madrid

Japan: HIT, Kobe, MUE, Niigata, TGU, TIT, TMU, Tohoku Russia: RAS, RRC Kurchatov Institute USA: Alabama, ANL, Chicago, Columbia, Drexel, Illinois, Kansas, LLNL, LSU, Notre Dame, Sandia, Tennessee, UCD Brazil: CBPF, UNICAMP

Current Status

Current Activity: Far Detector Construction and Integration

Civil engineering work completed. Pit refurbished and access adapted.

Near detector:

- Location defined
- Preliminary study completed
- Lab ready end of 2009

C. Palomares Double Chooz Neutrino Experiment

Current Status

Liquid Scintillator

- Delivery Gd-complex completed
- PXE arrived in MPIK (Heidelberg) tests and purification going on
- Scintillator hall ready, filling up with equipment

Vessels and mechanical components:

- Design approved
- The fabrication is on-going

Tube valid-stiles Fourtiture et installe

Tubes & extended

PXE 8 tons

futer à minteri

Current Status

PMT 10" Hamamatsu R7081

PMT geometry baseline 390 PMTs/detector

PMT mechanical support & magnetic shield

C. Palomares Double Chooz Neutrino Experiment

First 100 PMT batch delivered. Test benches ready

Schedule

2010

- Far detector assembly 2008—Summer 2009
- Far detector commissioning Summer 2009
- Near detector civil work complete End 2009
- Near detector assembly
- Near detector start
 Beginning 2011

Expected Sensitivity

Summary

- Double Chooz will be the first of a new generation of neutrino experiments using identical detectors at different distances from a reactor to measure Θ₁₃
- We will measure or set a strong limit in Θ₁₃ within a few years

Neutrino oscillations: present status

Θ_{13} Determination

 $\sin^2 2\theta_{13}$ — δ plane for the true values $\sin^2 2\theta_{13}$ =0.1 and δ =90° arXiv:0710.5027

Θ_{13} Determination

Evolution of the 3σ discovery potential of a non-zero value of θ_{13} of upcoming experiments

Lowest true value for which $\sin^2 2\theta_{13} = 0$ excluded at $\geq 3\sigma$

Reactor experiments proposals

Reactor experiments proposals

Vulcano08 30 May NUBLE

Double-Chooz: Systematic errors

		Chooz		Double-Chooz	
Reactor- induced	ν flux and σ	1.9 %	<0.1 %	Two ''identical'' detectors, Low bkg	
	Reactor power	0.7 %	<0.1 %		
	Energy per fission	0.6 %	<0.1 %		
Detector - induced	Solid angle	0.3 %	<0.1 %	Distance measured @ 10 cm + monitor core barycenter	
	Target Mass	0.3 %	0.2 %	Same weight sensor for both det.	
	Density	0.3 %	<0.1 %	Accurate T control (near/far)	
	H/C ratio & Gd concentration	1.2 %	<0.2%	Same scintillator batch + Stability	
	Spatial effects	1.0 %	<0.1 %	"identical" Target geometry & LS	
	Live time	few %	0.25 %	Measured with several methods	
Analysis	From 7 to 3 cuts	1.5 %	0.2 - 0.3 %	(see next slide)	
Total		2.7 %	< 0.6 %	(Total ~0.45% without contigency)	