Double-Chooz Neutrino Experiment

Carmen Palomares
Ciemat (Spain)
For Double-Chooz Collaboration
Neutrino Oscillation

From $\nu_\mu \rightarrow \nu_\tau$
Atmospheric ν_μ

$$
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix}
=
\begin{pmatrix}
1 & 0 & 0 \\
0 & c_{23} & s_{23} \\
0 & -s_{23} & c_{23}
\end{pmatrix}
\begin{pmatrix}
c_{13} & 0 & s_{13}e^{-i\delta} \\
0 & 1 & 0 \\
-s_{13}e^{i\delta} & 0 & c_{13}
\end{pmatrix}
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
$$

where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$

From $\nu_e \rightarrow \nu_x$
Solar ν_e

From nuclear reactor experiments

where $s_{ij} = \sin \theta_{ij}$, $c_{ij} = \cos \theta_{ij}$

3 mixing angles
1 complex phase
2 mass differences
Current knowledge

SK+K2K+MINOS
\[\theta_{23} = 43.3^{+4.3}_{-3.8} \]
\[|\Delta m_{13}^2| = 2.6 \pm 0.2 \times 10^{-3} \text{eV}^2 \]

Solar+KamLAND
\[\theta_{12} = 33.7 \pm 1.3 \]
\[|\Delta m_{12}^2| = 7.9^{+0.27}_{-0.28} \times 10^{-5} \text{eV}^2 \]

Limit at 90% CL:

(\text{CHOOZ} + \text{atm} + \text{LBL} + \text{solar} + \text{KamLAND})

\[\sin^2 2\theta_{13} < 0.11 \]

arXiv:0710.5027

The main goal of upcoming experiments is the determination of \(\theta_{13} \)

θ_{13} at nuclear reactors experiments

$\bar{\nu}_e$ disappearance searches

$P(\bar{\nu}_e \rightarrow \bar{\nu}_e)$ Independent of δ-CP, weak dependence on Δm_{12}

Matter effects negligible due to the small distances and the ν energy O(MeV)

- Unambiguous measurement of θ_{13} complementary to beams
- The only limitation comes from statistical and systematic errors
- These experiments must be carried out on a short time scale to provide an input for future beams
Neutrino detection at nuclear reactor experiments

Detection by inverse β-decay

$$\bar{V}_e + p \rightarrow e^+ + n$$

Signature Delayed coincidence of:

Prompt e^+ annihilation $E_{e^+} = E_\nu - (M_n - M_p)$

Photons from n capture on H $E_\gamma = 2$ MeV
on dedicated nuclei (Gd) $E_\gamma = 8$ MeV
Backgrounds

Accidental:
- e^+-like signal: radioactivity from materials and surrounding rock.
- n signal: n from cosmic μ spallation, thermalized and captured on Gd.

Or another radioactivity event

Correlated:
- fast n (by cosmic μ) recoil on p (low energy) and captured on Gd
- long-lived (9Li, 8He) β-decaying isotopes induced by μ
To look for non-zero values of θ_{13}

Beyond the previous systematic limitations:

1. **Two detectors** to reduce uncertainties to the reactor flux
2. **Identical detectors** to reduce errors due to detector acceptance
Improving CHOOZ

\[
\text{CHOOZ: } R = \frac{N_{\text{meas}}}{N_{\text{exp}}} = 1.01 \pm 2.8\% \text{ (stat)} \pm 2.7\% \text{ (sys)}
\]

Statistical error

<table>
<thead>
<tr>
<th></th>
<th>CHOOZ</th>
<th>Double Chooz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Target volume</td>
<td>5.55 m³</td>
<td>10.3 m³</td>
</tr>
<tr>
<td>Data taking period</td>
<td>Few months</td>
<td>3-5 years</td>
</tr>
<tr>
<td>Event rate</td>
<td>2700</td>
<td>Chooz-far 40000/3y Chooz-near > 1 106/3y</td>
</tr>
<tr>
<td>Statistical error</td>
<td>2.8%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

Systematic errors

- Improve detector design and knowledge
- Large S/B detector design (shielding and radiopurity materials) and increasing overburden

<table>
<thead>
<tr>
<th></th>
<th>CHOOZ</th>
<th>Double Chooz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor uncertainties</td>
<td>2.1%</td>
<td>----</td>
</tr>
<tr>
<td>Number of protons</td>
<td>0.8%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Detector Efficiency</td>
<td>1.5%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>
The Double Chooz Collaboration

Spokesman: Hervé de Kerret (APC)

France: APC Paris, CEA/Dapnia Saclay, Subatech Nantes, Strasburg

Germany: Aachen, MPIK Heidelberg, TU München, EKU Tübingen, Hamburg

Spain: CIEMAT Madrid

UK: Sussex

Japan: HIT, Kobe, MUE, Niigata, TGU, TIT, TMU, Tohoku

Russia: RAS, RRC Kurchatov Institute

USA: Alabama, ANL, Chicago, Columbia, Drexel, Illinois, Kansas, LLNL, LSU, Notre Dame, Sandia, Tennessee, UCD

Brazil: CBPF, UNICAMP
The Chooz site:

Chooz-B reactors
8.4 GWth
Placed in the Ardennes (France)
The Detector(s)

Target: 10.3m3 Gd doped LS
(Acrylic) $R=1.15m$
$H=2.47m$
$th=8mm$

γ-Catcher: 22.6m3 LS
(Acrylic) $R=1.70m$
$H=3.55m$
$th=12mm$

Buffer: 114.2m3 mineral oil
(Stainless Steel) 390 10” PMTs
$R=2.76m$
$H=5.67m$
$th=3mm$

Inner Veto: 80m3 LS
(Steel) 78 8” PMTs
$R=3.27m$
$H=7 m$
$th=10mm$

Outer muon Veto: Scintillator panels

Shielding: 15cm Steel
Current Status

Current Activity: Far Detector Construction and Integration

- Civil engineering work completed.
- Pit refurbished and access adapted.

Near detector:
- Location defined
- Preliminary study completed
- Lab ready end of 2009
Current Status

Liquid Scintillator
- Delivery Gd-complex completed
- PXE arrived in MPIK (Heidelberg) tests and purification going on
- Scintillator hall ready, filling up with equipment

Vessels and mechanical components:
- Design approved
- The fabrication is on-going
Current Status

PMT 10” Hamamatsu R7081

- PMT geometry baseline
- 390 PMTs/detector
- PMT mechanical support
- & magnetic shield

First 100 PMT batch delivered.
Test benches ready
Schedule

- Far detector assembly 2008—Summer 2009
- Far detector commissioning Summer 2009
- Near detector civil work complete End 2009
- Near detector assembly 2010
- Near detector start Beginning 2011
Expected Sensitivity

Current limit @90%CL
\(\sin^2 2\theta_{13} < 0.11 \)

Limit from Far Chooz (~2010)
\(\sin^2 2\theta_{13} < 0.06 \)

Limit from Double Chooz (~2012)
\(\sin^2 2\theta_{13} < 0.035 \)

Far detector alone
\(\sigma_{\text{sys}} = 2.5\% \)

Both detectors
\(\sigma_{\text{sys}} = 0.6\% \)
Summary

- **Double Chooz** will be the first of a new generation of neutrino experiments using identical detectors at different distances from a reactor to measure Θ_{13}.

- We will measure or set a strong limit in Θ_{13} within a few years.
Backup
Neutrino oscillations: present status
θ_{13} Determination

$\sin^2 \theta_{13} - \delta$ plane for the true values $\sin^2 \theta_{13} = 0.1$ and $\delta = 90^\circ$

arXiv:0710.5027

Super beams

Reactors

90% CL

3σ

- Best fit normal hierarchy
- Best fit inverted hierarchy

Combination:
- A relative good determination of θ_{13}
- Some information on δ (corrupted by the ambiguity in the mass hierarchy)
- CP violation cannot be established
θ_{13} Determination

Evolution of the 3σ discovery potential of a non-zero value of θ_{13} of upcoming experiments

Lowest true value for which $\sin^22\theta_{13}=0$ excluded at $\geq3\sigma$
Reactor experiments proposals
Reactor experiments proposals

![Graph showing neutrino oscillations]

G. Mention et al. (in preparation)
Double-Chooz: Systematic errors

<table>
<thead>
<tr>
<th>Source</th>
<th>Chooz</th>
<th>Double-Chooz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reactor-induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ν flux and σ</td>
<td>1.9 %</td>
<td>$< 0.1 %$</td>
</tr>
<tr>
<td>Reactor power</td>
<td>0.7 %</td>
<td>$< 0.1 %$</td>
</tr>
<tr>
<td>Energy per fission</td>
<td>0.6 %</td>
<td>$< 0.1 %$</td>
</tr>
<tr>
<td>Detector-induced</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid angle</td>
<td>0.3 %</td>
<td>$< 0.1 %$</td>
</tr>
<tr>
<td>Target Mass</td>
<td>0.3 %</td>
<td>0.2 %</td>
</tr>
<tr>
<td>Density</td>
<td>0.3 %</td>
<td>$< 0.1 %$</td>
</tr>
<tr>
<td>H/C ratio & Gd concentration</td>
<td>1.2 %</td>
<td>$< 0.2 %$</td>
</tr>
<tr>
<td>Spatial effects</td>
<td>1.0 %</td>
<td>$< 0.1 %$</td>
</tr>
<tr>
<td>Live time</td>
<td>few %</td>
<td>0.25 %</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>From 7 to 3 cuts</td>
<td>1.5 %</td>
<td>0.2 - 0.3 %</td>
</tr>
<tr>
<td>Total</td>
<td>2.7 %</td>
<td>$< 0.6 %$</td>
</tr>
</tbody>
</table>

- Two “identical” detectors, Low bkg
- Distance measured @ 10 cm + monitor core barycenter
- Same weight sensor for both det.
- Accurate T control (near/far)
- Same scintillator batch + Stability
- “identical” Target geometry & LS
- Measured with several methods
- (see next slide)
- (Total ~0.45% without contingency)