

Carlo Gustavino For the LUNA collaboration

Agreement between two completely independent determinations of ω_b !!! Wonderful check of Standard Cosmological Model X_D=best BBN "bariometer"

6 D+CMB 5 $\mathrm{N}_{\mathrm{eff}}$ 3 2 D+ ⁴He +CMB 1 0.0175 0.02 0.0225 0.02.5 0.0275 0.03 $\omega_{\rm p}$

7

N_{eff} is much better bounded than with CMB alone

Apart for Helium, all the other nuclides are sensitive to the Nuclear reaction Network.

Several key reactions studied by LUNA

Post: P(D,γ)³He & ³He(D,p)⁴He Present: ³He(⁴He,γ)⁷Be Next: D(⁴He,γ)⁶Li Desirable: D+D reactions D,³He abundance ⁷Li abundance ⁶Li abundance (not shown in the schematic) D abundance (not underground)

Why underground Measurements?

Very low cross sections because of the coulomb barrier
UG experiments to reduce the background due to cosmic ray

N.B. differently from stars, in BBN we don't have a fixed T (gamow peak), although there is a kinetic equilibrium

Why underground Measurements?

 Danger in extrapolating because of possible low energy nuclear resonances
Direct measurement at low energies nedeed!
Solution: UnderGround Measurements, high beam current

A good example: ${}^{14}N(p,\gamma){}^{15}O$

 $^{14}N(p,\gamma)^{15}O$ is the slowest CNO cycle therefore it regulates the CNO solar neutrino flux and plays an important role in estimating the age of Globular Clusters. The LUNA measurements ($E_{cm} \ge 71$ keV) show that this cross section is a factor 2 lower than the previous extrapolated values ($E_{cm} \ge 190$ keV)

GC age estimation increases of 0.7-1 Gyr CNO neutrino flux decreases of a factor ≈ 2

Gran Sasso National Laboratory (LNGS)

The LUNA1 (50 kV) accelerator

$P(D,\gamma)^{3}He$ $D(^{3}He,p)^{4}He$

Voltage Range : 1 - 50 kV Output Current: 1 mA Beam energy spread: 20 eV Long term stability (8 h): 10⁻⁴ Terminal Voltage ripple: 5 10⁻⁵

$D(^{3}He,p)^{4}He Q = 18.4 \text{ MeV} S(0)=6.7 \text{ MeV barn}$ ⁴He synthesis. Also important for electron screening and stopping power study H. Costantini et al., Phys. Lett. B482(2000)43

The LUNA2 (400 kV) accelerator

Voltage Range: 50-400 kV Output Current: 1 mA (@ 400 kV) Absolute Energy error: ±300 eV Beam energy spread: <100 eV Long term stability (1 h) : 5 eV Terminal Voltage ripple: 5 Vpp A. Formicola et al., NIMA 527 (2004) 471.

3 He(4 He, $_{\gamma}$) 7 Be D(4 He, $_{\gamma}$) 6 Li

³He(⁴He,γ)⁷Be The ⁷Li puzzle

The primordial production of ⁷Li depends directly on the ³He(⁴He, γ)⁷Be rate. The ⁷Li abundance predicted by BBN models based on the WMAP baryon density is not compatible with "Spite plateau" data for metal-poor population II stars. Systematics in Astrophysics? Models?

New physics?

New measurements to fix nuclear physics

input parameters...

Leading processes: ${}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Be}{}^{7}\text{Be}(n,\alpha){}^{4}\text{He}$

³ He(⁴ He,γ)'Be	rate	$\Delta \sigma_{Li}^2 / \sigma_{Li}^2$ (%)
	⁷ Be(n,⁴He)⁴He	40.9
We get:	⁴ He(³ He, γ) ⁷ Be	25.1
$10^{10}(^{7}\text{Li} /\text{H})_{\text{th}} = 4.8 \pm 0.4 \pm 0.4 \rightarrow$	⁷ Be(d,p) ⁴ He ⁴ He	16.2
	³ He(d,p) ⁴ He	8.6
Due to Due to nuclear	² H(p,γ) ³ He	4
$\delta \omega_{\rm b}$ =0.001 uncertainties	others	5.2

P. D.Serpico et al. JCAP 0412 (2004) 010

While the "Spite plateau" and other measurements suggest: 1<10¹⁰(⁷Li /H)_{exp}<2

Still an open problem: the most puzzling for Standard BBN New clues on Astrophysics? A window on non-standard Physics in the Early Universe?

Boron v's are wonderful probes of solar interior. They provide an independent measurement of T with respect to helioseismology, at the level of ~0.3%. ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ and ${}^{7}\text{Be}(p,\gamma){}^{8}\text{B}$ are the main source of uncertainty in the determination of the ${}^{8}\text{B} \text{ v's}$.

3 He(4 He, γ) 7 Be

Q = 1.6 MeV

Experiment goals:

- Cross section of direct reaction down to E_{cm}= 50-60 keV.
- Reaction yield around E_{cm}= 100–150 keV via off-line ⁷Be radioactive decay collected in the beam catcher
- Final error < 3 % !

N.B. S(0)_{y-prompt} = 0.507±0.016 keV barn S(0)_{y-decay} = 0.572±0.026 keV barn

Experimental tecnique:

- ⁴He beam (low D₂⁺ contamination), ³He gas target, HPGe detector (prompt γ's)
- High purity Copper beam catcher, HPGe detector (⁷Be decay γ's)
- Calorimetric measurement of beam intensity

Prompt γ

Activation γ

Systematics

	Determination	Uncert.
Beam current	Calibrated calorimeter	<1%
Target thickness	Pressure profile measurements (z,r), gas purity on line measurement (Si- detector)	0.6%
Beam heating	Measured	<0.4%
Detector efficiency	Measured	1.8%
Parasitic ⁷ Be production	Measured upper limit (⁴ He+ ⁴ He)	0.04%
Backscattering loss	Measured and simulated	0.7%
Sputtering loss	Upper limit from Monte Carlo Simulation	0.02%
Gamma-recoil effect	Measured, simulated	0.5%

Total systematic uncertainty: <2.3%

³He(⁴He, γ)⁷Be LUNA Activation preliminary results

$D(^{4}He,\gamma)^{6}Li$ Q = 1.5 MeV

Main reaction for ⁶Li production

•No direct measurements for E_{cm} <100 keV

•Theoretical calculations of S-factor differs for more than one order of magnitude

$D(^{4}He,\gamma)^{6}Li$

Very low cross section

"Identical" experimental set up respect to the one of the running ${}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Li}$ but the gas target (D₂ instead of ${}^{3}\text{He}$)

*assuming 100 μA alphas bombarding 1018 nuclides/cm2

Conclusion

LUNA has shown that is possible to measure nuclear reactions at $\sigma(E_{star})$:

> ³He $(^{3}\text{He}, 2p)^{4}\text{He}$ v from the sun ¹⁴N(p,γ)¹⁵O ³He(α,γ)⁷Be

 v_{CNO} and GC age The Sun

The LUNA program foresees also precision measurements of BBN key reactions:

•Scenario: BB, v-decoupling, BBN Theory: Standard Physics+WMAP+Nuclear Physics •Observations: D, ⁴He, ³He, ⁶Li, ⁷Li... ·Hints: Cosmology, Astrophysics, New Physics

Past: $D(p,\gamma)^{3}He^{-3}He(D,p)^{4}He$ Present: ${}^{3}\text{He}({}^{4}\text{He},\gamma){}^{7}\text{Be}$ Future (Underground): ⁴He(D, y)⁶Li Desirable (Surface): $D(D,p)^{3}H$, $D(D,n)^{3}He$ D, ³He, ... abundance

 $D,^{3}$ He abundance

- ⁷Li abundance
- ⁶Li producer