Cosmic rays (large scale) anisotropies from 10¹³ eV up to EHE

Piera L. Ghia IFSI-INAF, Torino, and LNGS-INFN, Assergi

OUTLINE

CR anisotropies: definition and reason for the measurement (propagation)

The experimental problem

Existing data on large-scale anisotropies

Prologue

- ✓ Main question about CRs: origin
- ✓ Answer:

Need to study all whose opposition picture Ecc simultaneously to build a unified picture and Need to study all these observables Anisotropy study essential and of CRs in our Galaxy. opies) Difficult t My Doint of View: experimental One series V Du arge perime ausence of large scale

annied picture for CR propagation in the Galaxy

- ✓ Due to many complicated processes inherent in the CR transport
- ✓ Mathematical complexity in the diffusion processes of CRs
- Difficulties in the experimental measurement of CR anisotropies

Piera L. Ghia

Anisotropy: a simple description

- T_I=(light) time to reach the Earth from a source on a straight line
- τ=time for a CR to reach the Earth
- δ=T/τ
- If τ==T, δ=100%, CRs arrive directly to Earth. Maximum anisotropy
- If τ==∞, δ=0%, CRs completely isotropized by the magnetic field

 T_1

- ✓ Either the motion of CR from the source to the sink in the intergalactic space...
- ✓... or the motion of the Earth/Solar System
 with respect to an
 isotropic gas in the rest
 frame (e.g., CRs "gas)

CRs diffusion and anisotropy

Diffusive regime in the Galactic magnetic field Average motion of CRs highly random (near-isotropic flux) Diffusion coefficient depends on diffusion mean free path

$$D = \frac{1}{3}\lambda_D v$$

When there is diffusion, there are density gradients (CRs flow away from Galactic plane) -> anisotropy δ

$$\delta = \lambda_D \frac{\partial N}{\partial x} \frac{1}{N} = \frac{3D}{v} \left| \frac{\nabla N}{N} \right|$$

CRs diffusion and anisotropy

v=particle velocity ρ =gaseous disk density (1proton/cm³) h=scale height of the gaseous disk ≈ 100 pc H=scale height of the halo ≈ 700 pc λ_{esc} =thickness of traversed matter ==> D≈10²⁹ cm²/sec

Expected anisotropy $\delta \approx v_D/v = D/H \approx 10^{-4}$ D increases with E (hence δ increases with E)

Alternative versions of diffusion

$$D \propto R^{0.6} \mathrm{cm}^2 \mathrm{s}^{-1}$$

pure diffusion ("leaky-box") Regular magnetic field

$$D \propto R^{0.3} \,\mathrm{cm}^2 \mathrm{s}^{-1}$$

diffusion + distributed reacceleration in ISM (regular magnetic field + random turbulent field)

$$D \propto R^{0.15 \ 0.2} \,\mathrm{cm}^2 \mathrm{s}^{-1}$$

diffusion + Hall diffusion (drift)

Anisotropy amplitude should correspondingly rise with energy

Piera L. Ghia

...or the motion of the Earth/Solar System wrt an isotropic gas in the rest frame i.e., the **Compton-Getting** effect

 Expected galactic CR anisotropy due to Earth's orbital motion around the sun (in solar time):

$$\frac{\Delta I}{\langle I \rangle} = (\gamma + 2) \frac{v}{c} \cos \vartheta$$

I=CR intensity, γ =power-law index of CR spectrum (2.7), v=detector velocity \approx 30 km/s, θ =angle between detector motion and CR arrival direction

$$\frac{\Delta I}{\langle I \rangle}(\exp) \approx 0.047\%$$

A detector on the Earth moving around the Sun scans various directions in space while the Earth spins. Maximum at 6 hr (when the detector is sensitive to a direction parallel to the Earth's orbit)

- Possible galactic CR anisotropy due to Solar system motion through the CR "gas" (in sidereal time) ?
- ✓ Possible extra-galactic CR anisotropy due to Solar system motion (v≈350 km/s) through the universal rest frame (CMB "gas") ?

Piera L. Ghia

Why measuring the CR anisotropy?

✓ With respect to the knee:

- ✓ Origin of the knee from a diffusion process as a rigidity dependent leakage effect from the Galaxy -> anisotropy should increase as E^{0.6} (or E^{0.3} if there is re-acceleration in the ISM)
- Origin of the knee from a Hall effect (drift of CRs in a direction perpendicular to the regular field direction) -> weak increase of anisotropy as E^{0.2}
- Origin of the knee from change in the acceleration efficiency at the source -> no change in the anisotropy towards the knee
- Change in particle interactions in atmosphere at the knee region (but the knee is observed in all EAS components, e.m., muon, and hadron, hence astrophysical solution favored) -> no change in the anisotropy towards the knee

Why measuring the CR anisotropy?

✓ With respect to the highest energies:

- ✓ Increase of anisotropy amplitude expected (Larmor radius comparable to galactic disk thickness) before the transition?
- After the transition galactic->extra-galactic cosmic rays: largescale isotropy. Cosmological Compton-Getting effect?
 Possible signature between:
 - ✓ Transition @ ankle (≈5 10¹⁸ eV): cross-over from the steep end of the galactic to the flatter X-galactic flux
 - ✓ Or dip @ ankle (produced by e+e- production of X-galactic protons with CMB photons -> transition @ lower energies (≈ 5 10¹⁷ eV)
- ✓ At EHE -> point source astronomy

The experimental challenge

At E>few tens of TeV, measurements are indirect (fluxes too low) and are performed through Extensive Air Shower Arrays (or through underground muon detectors)

The problems (from an experimental point of view)

Small amplitude, statistical problem: need for

- Iong-term observations
- ✓ large collecting areas

Spurious effects to be kept as small as possible: need for

- detector uniformity (over area),
- detector stability (over time),
- continuity of operation.

 EAS arrays mostly located in "unfriendly" ambient, (e.g., at mountain level): large variations of T, meteorological effects

 EAS rate depends on atmospheric pressure (showers more or less absorbed depending on traversed atmosphere/pressure)

Consistency checks necessary

Principles of anisotropy measurement

- EAS arrays have uniform exposure in α (thanks to Earth's rotation) but not in δ (field of view limited by geographical position, zenith angle dependence of shower detection and reconstruction)
- Classical (and most used) technique: analysis in r.a., through harmonic analysis of the counting rate within a defined declination band (Raileigh formalism)

$$A = \delta \cos d$$

d= observation declination

Anisotropy measurement in practice

- ✓ For each detected EAS we determine
 - ✓ Arrival time
 - ✓ Arrival direction
 - ✓ Right ascension (sidereal time) & declination
 - ✓ "Energy"
- We correct counting rates for pressure and temperature
- ✓ After correction for P,T, we apply "safety" cuts:
 - ✓ Quality cuts on data
 - ✓ Full years of data taking
 - ✓ Full sidereal days only

After all the cooking: the sidereal time distribution

After all the cooking: the sidereal time distribution

X-check: the anti-sidereal time distribution

Piera L. Ghia

The observational "status of the art"

Piera L. Ghia

Existing data (up to 100 TeV)

FIG. 3: Amplitude and phase of the first harmonic fit to zenith-type plots from various cosmic ray experiments. The energy in the horizontal axis is either the median or the log-mean energy. Circles: muon detectors. Squares: extensive air shower array. Filled circle: SK-I. Data references: Bo = Bolivia (vertical) [12], Mi = Misato (vertical) [13], Bu = Budapest [13], Hob = Hobart (vertical) [13], Ya = Yakutsk [13], LoV = London (vertical) [13], So = Socomo (vertical) [12], Sa = Sakashita (vertical) [14], LoS = London (south) [15], Li = Liapootah (vertical) [16], Ma = Matsushiro (vertical) [17], Ot = Ottawa (south): [18], Po = Poatina (vertical) [19], Ho = Hong Kong [20], Ut = Utah [21], BaS = Baksan (south) [22], SK-I (this report), Kam = Kamiokande [10], Mac = MACRO [11], Tib = Tibet (vertical) [23], Ba = Baksan air shower [24], No = Mt. Norikura [3], Ea = EAS-TOP [25], Pe = Peak Musala [26].

 Data on sidereal anisotropies: good consistency up to 100 TeV (above 10 TeV, measurements by EAS arrays, below by underground muon detectors or high altitude EAS arrays)

 Amplitude and phase of the I harmonic rather constant

> A ≈ 5-10 10⁻⁴, Φ = 23-2.6 hr

Kamiokande & MACRO @ ≈10¹³ eV (underground muon detectors)

CR anisotropies

KAMIOKA: 3 kt water Cherenkov detector PRD 56 (1997) 23 $E_{th}(p) \approx 1.2 \ 10^{13} \text{ eV}$

FIG. 1. Cosmic-ray muon rate as a function of the rightascension of the arrival direction in Kamiokande. The average muon rate was normalized to be 1. The solid line shows the best-fit curve, assuming the first Fourier harmonics: $R(\alpha)=1$ $+r_0\cos(\alpha-\alpha_0)$, where $r_0=5.6\times10^{-4}$ and $\alpha_0=8.0^{\circ}$.

MACRO: 5 kt streamer tubes/scintillator detector PRD 67 (2003) 042002 $E_{th}(p) \approx 20 \ 10^{13} \text{ eV}$

FIG. 4. Deviations of the muon rate from the mean muon rate binned according to the local sidereal time at the Gran Sasso. Superposed is the best-fit curve of the form Eq. (13) representing the modulation.

Piera L. Ghia

More recently: Super-Kamiokande @ ≈10¹³ eV

50 kt water Cherenkov detector (Japan)

SK (5 yrs) Astro-ph/0508468 A=(6.6 ± 1.1)10⁻⁴ ϕ =1.6±0.5 hr

High altitude EAS array @ ≈10¹³ eV (Tibet)

4300 m a.s.l. Area 2 10⁴ m² 522 scint., 7.5 m apart E>4 TeV (up to 50 TeV) 5 yrs of data 4 different energies

Tibet As- γ (Ap. J, 626 (2005) L29) A(@4 TeV)=(8.3±0.5)10⁻⁴ ϕ =(0.9±0.2) hr

2000 m a.s.l. Area 1 10⁵ m² 35 scint., 80 m apart E>100 TeV 10 yrs of data

10 yrs of data A= $(3.4\pm0.3)10^{-4}$ $\phi=(3.3\pm0.4)$ hr S=10.3 σ

I harmonic in antisidereal time @ 30, much lower level than sidereal

Observed solar anisotropy due to CG effect

Piera L. Ghia

Astronomical interpretation?

Mapping of the observed sidereal wave in galactic coordinates

Lack of events from direction of northern galactic latitudes, higher counting rate when looking towards the GP

Piera L. Ghia

Astronomical interpretation?

Mapping of the observed sidereal wave in galactic coordinates

SK: harmonic analysis in 10 δ bands -> sky map: excess region in the Taurus region (toward the center of the Orion Arm)

Piera L. Ghia

Conclusions on existing data (up to 100 TeV)

- Existing data on sidereal anisotropies show good consistency up to 100 TeV (above 10 TeV, measurements by EAS arrays, below by underground muon detectors or high altitude EAS arrays)
- ✓ Amplitude and phase of the I harmonic rather constant (A≈5-10 10⁻⁴, φ=23-2.6 hr)
- Consistent with large-scale diffusive propagation of CRs in the Galaxy, phase consistent with "excess" when looking towards the galactic disc (Orion Arm?)
- ✓ Amplitude not changing with energy:
 - ✓ Compton-Getting effect not excluded: due to the motion of the solar system wrt to the CR rest system ? (v>25 km/s)
 - ✓ Convective mechanism in the propagation?

Piera L. Ghia

Existing data up to 100 EeV

- "Old" experiments: Apparently larger amplitudes at higher energies, but statistical uncertainties large ("noise" effect)
- Above 10¹⁷ eV, containement of CR in the galactic magnetic field should start to fail. Escape of CR should induce detectable large scale anisotropies. Galactic plane enhancement?
- ✓ At even higher energies, charged particle "astronomy"?

Existing data up to 100 EeV

Haverah Park and Yakutsk claimed significant anisotropies at 10^{17} - 10^{19} eV (P \approx 0.3%, A \approx 1%) Interpreted as excess from the GP

Anisotropy "amplitude" increases as number of events decreases

$$\delta = \frac{I_{\text{max}} - I_{\text{min}}}{I_{\text{max}} + I_{\text{min}}} \delta \propto \frac{\sqrt{N}}{N} = \frac{1}{\sqrt{N}}$$

EAS -TOP up to 1 PeV

E_0 [TeV]	A_{sol} (10 ⁴)	ϕ_{sol} [hr]	A/σ	A_{sid} (10 ⁴)	ϕ_{sid} [hr]	A/σ
100	2.7 ± 0.3	4.3 ± 0.5	8.2	3.4 ± 0.3	3.3 ± 0.4	10.3
300	4.4 ± 1.0	4.4 ± 0.8	4.6	2.0 ± 1.0	12.2 ± 1.9	2.0
600	2.4 ± 1.7	5.2 ± 2.7	1.4	2.8 ± 1.7	13.5 ± 2.3	1.7
900	5.2 ± 2.8	4.6 ± 2.1	1.8	4.6 ± 2.8	12.8 ± 2.3	1.6
1200	3.6 ± 5.0	0.5 ± 5.4	0.7	8.9 ± 5.0	13.0 ± 2.1	1.8

 \mathbf{T}

Piera L. Ghia

Increase of δ with law exceeding $\mathbf{E}^{\mathbf{0}.\mathbf{3}}$ excluded

Energy (TeV) 500

1000

CK amsouropies

Kascade @ 1-10 PeV

Sea level Area 4 10⁴ m² 252 scint., 13 m apart E>0.6 PeV 4 yrs of data Ap.J, 604 (2004) 687

Fig. 6.—KASCADE upper limits (95%) of Rayleigh amplitudes A vs. primary energy (*thick line*) compared to reported results from the literature (Nagashima et al. 1990; Aglietta et al. 1996, 2003; Kifune et al. 1986; Gerhardy & Clay 1983). Model predictions from Candia et al. (2003) for the total anisotropy and for the anisotropies of the proton and iron components are also shown (*thin lines*).

AGASA, Fly's Eye, Sugar at 1 EeV

- ✓ AGASA: 4% dipole-like enhancement oriented towards the Galactic Center at E>10¹⁸ eV. Neutron emission from GC?
- Corroborated by Fly's Eye (galactic plane enhancement) and SUGAR (offset from the GC of 7.5°)
- AGASA and Fly's Eye too far north in latitude to directly observe the Galactic Center
- Yakutsk and HiRes give a limit (still not excluding AGASA findings)
- No large scale anisotropies at higher energies (but data sample are still limited)
- Still waiting for Auger data

	長坂プランチ 長坂プランチ 		AGASA harmonic analysis 900 m above sea level Area 100 km ² 11 scint., 1 km apart 11 yrs of data E> 1.2 10 ¹⁷ eV					
	Energy range/EeV	#	Amplitude[%]	Phase	k	Pprob		
	1/8-1/4	19146	1.6	211	1.37	0.25		
	1/4-1/2	32921	1.2	35	1.32	0.26		
	1/2-1.0	31657	1.0	298	0.87	0.41		
	1.0-2.0	18274	41	300	7.95	0.00035		
	2.0-4.0	6691	3.1	269	1.62	0.19		
	4.0-8.0	1913	2.9	278	0.41	0.66		

Anisotropy of amplitude 4% around 10¹⁸ eV found in first harmonic analysis.

No significant large scale anisotropy at higher energies

 $(\underset{\text{Piera L. Ghia}}{\text{ptera L. Ghia}} = 10^{20} \text{ eV})$

AGASA Sky Map

With a two-dimensional map (pixel size 20°) a 4 σ excess is found near the GC region

Significance $[\sigma]$

AGASA GC excess interpretation

- Cosmic ray protons. Excess directed towards the GP, apparently correlated with the nearby spiral arms (hence CR are still galactic at these energies)
- ✓ Neutrons primaries. Decay length for n at 10¹⁸ eV is ≈ 10 kpc: can propagate from GC without decaying or bending in magnetic field. Neutrons from interactions of heavy nuclei with ambient photons or matter in the GC.

SUGAR Sky Map

Area 70 km² 47 scint., 1.6 km apart $E> 2 10^{17} eV$

Fractional excess

- Excess is centered at (α, δ) = (274⁰, - 22⁰)
- Statistical significance 2.6 σ
- No hint of a signal from the true Galactic Center (peak is 7.5⁰ away)
- Signal is no larger than would be expected from a point source
- 4 deg. ang. resolution

Combined Anisotropy Data

Piera L. Ghia

Pierre Auger Observatory

Hybrid EAS array under construction
in Argentina
1600 detector stations
1.5 km spacing
3000 km²
4 fluorescence eyes (6 telescopes each)

Pierre Auger Observatory

Piera L. Ghia

And to conclude...

Experimental challenge for the present/future

Anisotropy measurement @ 10^{17} eV (where CRs should not be diffusing anymore in the Galaxy)

Piera L. Ghia

Experimental challenge for the present/future

