

May 22, 2006

Astro Particle Cosmology

What an Astrophysicist can tell about the nature of Dark Matter ?

Sergio Colafrancesco INAF - Osservatorio Astronomico di Roma INFN – Roma *Tor Vergata* Email: <u>Sergio.Colafrancesco@mporzio.astro.it</u>

DM is everywhere !

Ordinary Matter

Where are there more baryons than antibaryons? Why comparable to the dark matter density?

DM properties: 5 basic

[see Baltz 2005 for a review]

DM relic density

Generic ACDM

WMAP 3yr

 $0.094 \le \Omega_{DM} h^2 \le 0.112$ $0.19 \le \Omega_{DM} \le 0.22$

Formation of DM halos

Do we have good DM candidate?

PBHs

DM candidates

Lower possible end of CDM Bosons with M~10⁻²² eV **DM-DE common origin** $\mathbf{P} = -\mathbf{A} / \mathbf{\rho}$ **Non-thermal production** $\mu eV < M_{axion} < m eV$ **Experimental limits** Warm DM $0.0005 < \Omega_{y} h^{2} < 0.0076$ **Massive neutrinos acceptable** Sterile v with $m_v \sim 10-100 \text{ keV}$ **Spin = 0 supersymmetric particle** Gravitinos $1 \text{ MeV} \le M_{LDM} \le 4 \text{ MeV}$ Elusive: only e[±] 511 keV line **Neutralinos** Kaluza-Klein excitations **Sneutrinos** L-KK (r-parity) particle: stable **М_{кк} ~1 Те**V Axinos String theory brane fluctuations $M_{branon} > 100 \text{ GeV}$ **Q-balls** Ordinary matter in mirror world **Split-SUSY Dissipative & complex chemics** Produced at the end of Inflation $M > 10^{13} \text{ GeV}$

BHs @ quark-hadron transition $M_{PBH} \sim M_{horizon}(T=10^2 MeV) > M_{\Box}$

Measured coupling constants unify at GUT scale in SUSY but not in SM

Can we detect the neutralino ?

DM search: direct

DM direct search

··· Calvis J. Hamilto

DM search in the labs.

SUSY *a* colliders

DM direct search: results

[James Pinfold - ISMD 2005]

Rita Bernabei's Talk

DM indirect search

DM search in Cosmic Structures

INFERENCE

PHYSICS

DM halo profile: constraints

Galaxies

- No evidence for a density cusp at r < 0.2 kpc
- NGC2976: η =0.27 at r < 1.8 Kpc [Simon et al. 2003]
- Inner steeper profile ?

DM density *universal* profile

Numerical simulations (CDM)

Different groups obtained similar results [Navarro et al. 2003, Reed et al. 2003]

Analytical fitting

General DM profile

$$\rho(r) = \frac{\rho_0}{(r/R)^{\gamma} [1 + (r/R)^{\alpha}]^{(\beta - \gamma)/\alpha}}$$

	α	β	γ	R (kpc)
Kra	2.0	3.0	0.4	10.0
NFW	1.0	3.0	1.0	20
Moore	1.5	3.0	1.5	28.0
Iso	2.0	2.0	0	3.5

DM halo structure: smooth

$$\begin{aligned} R_{ext} &= p \cdot r_{c} \\ \hline r_{c} &= \frac{1.22h^{-1}Mpc}{p} \Big[\frac{M}{10^{15}h^{-1}M_{\odot}} \cdot \frac{400}{\Omega_{m}\Delta(\Omega_{0},z)} \Big]^{1/3} \frac{1}{1+z} \\ R_{inn} & t_{g} &= \sqrt{\frac{3\pi}{32G\rho}} \approx t_{ann} = \frac{1}{n_{\chi} \langle \sigma V \rangle_{A}} \end{aligned}$$

$$\begin{aligned} \mathbf{n}_{\chi} &= \mathbf{n}_{\chi,0} \mathbf{g}(\mathbf{r}) & \mathbf{n}_{g} = \sqrt{\frac{3\pi}{32G\rho}} \approx t_{ann} = \frac{1}{n_{\chi} \langle \sigma V \rangle_{A}} \end{aligned}$$

$$\begin{aligned} \mathbf{n}_{\chi,0} &= 1.4 \cdot 10^{-5} \text{ cm}^{-3} \frac{p^{3}}{I} \Omega_{\chi} h^{2} \Big[\frac{M_{\chi}}{100 \text{ GeV}} \Big]^{-1} \Big[\frac{\Delta(\Omega_{0},z)}{400} \Big] \end{aligned}$$

$$\begin{aligned} \mathbf{\Delta}(\Omega_{0},z) &= 18\pi^{2} / [\Omega_{0}(H_{0}t)^{2}(1+z)^{3}] \\ I(p,\eta,\xi) &= \int_{0}^{p} dx x^{2-\eta} (1+x)^{\eta-\xi}. \end{aligned}$$

21

DM halo: smooth + clumps + BHs

DM cusps in cosmic structures ?

Cusp problem <u>alleviated</u> by___

Changes in the basic physics

- WIMPs with large $<\sigma$ V>
- broken scale invariance
- modified gravity

Baryon-DM coupling & interaction

• gas outflow during early stages of galaxy formation radius

Cusp problem strenghtened by

DM - Dark Energy coupling

• modified particle dynamics $G^* = G\left(1 + \frac{4}{3}\beta^2\right)$

 β^2 = ratio of the DM-DE interaction w.r.t. gravity.

DM search in Cosmic Structures

Inference

PHYSICS

Annihilation products

Imagine a Galaxy

An astronomer's view

A cosmologist's view

An AstroParticle Physicist's view

Constraints on DM physics from multi-v observations of DM Halos

- Radio
- X-rays
- γ-rays
- SZ effect
- Heating

 $F_{v} \propto \frac{1}{D_{L}^{2}} \langle \sigma V \rangle_{ann} \cdot \frac{1}{M_{v}^{2}} \cdot \frac{dn_{e}}{dE_{e}} \cdot \left(\frac{dE_{e}}{dE_{v}}\right)$

Astro-Particle constraints

χ annihilation process

Leading annihilation channels

The equilibrium spectrum $\frac{\partial n_e(E,r)}{\partial x} - \nabla \left[D(E) \nabla n_e(E,r) \right] - \frac{\partial}{\partial E} \left[b_e(E) n_e(E,r) \right] = Q_e(E,r)$ 2 24 **Production** Equilibrium 0 22 $Q_e(E,r)$ $(B_e^{(H)})^{-2}$ (dn_v/dE)_{eq.} 8 $n_{e}(E,r)$ 18 -4 -6 16 100 1000 10 100 1000 0.001 0.01 0.1 0.001 0.01 0.1 1 1 10 E [GeV] E [GeV] Diffusion **E** losses $b_e(E) = b_{IC} + b_{svnc} + b_{Coul} + b_{brem}$ $D(E) = D_0 E^{\gamma} B^{-\gamma}$

Energy losses vs. Diffusion

Solution: complete

$$n_e(E,r) = \frac{1}{b(E)} \int_{E}^{M_{\chi}} dE' \hat{G}(r,\lambda - \lambda') Q_e(E,r)$$

[Colafrancesco, Profumo & Ullio 2005-2006]

Solution: qualitative

$$n_e(E,r) = \left[Q_e(E,r)\tau_{loss}\right] \cdot \frac{V_{source}}{V_{source} + V_{diffusion}} \cdot \frac{\tau_D}{\tau_D + \tau_{loss}}$$

 $n_e(E,r) = \left[Q_e(E,r)\tau_{loss}\right]$

$$n_e(E,r) = \left[Q_e(E,r)\tau_{loss}\right] \cdot \frac{V_{source}}{V_{diffusion}} \cdot \frac{\tau_D}{\tau_{loss}}$$
DM induced astro-particle signals

Covering the whole e.m. spectrum

DM search: the closest clump

DM search in the MW: limits

Positron fraction

Anti-p flux

511 keV line

DM search in the MW: limits

GC demography

Indirect search: ... still more

Imagine a Cluster of galaxies

An astronomer's view

A cosmologist's view

An AstroParticle Physicist's view

DM in Clusters & Dwarf galaxies

Cluster of galaxies

DM annihilation in cosmic structures

Constraints on DM physics from multi-v observations of DM Halos

- Radio
- X-rays
- γ-rays
- SZ effect
- Heating

 $F_{v} \propto \frac{1}{D_{L}^{2}} \langle \sigma V \rangle_{ann} \cdot \frac{1}{M_{v}^{2}} \cdot \frac{dn_{e}}{dE_{e}} \cdot \left(\frac{dE_{e}}{dE_{v}}\right)$

A Typical DM halo SED

A Typical DM halo SED

 $R_h \sim kpc$

 $M_{\gamma} = 10 GeV$

 $M_{\chi} = 100 GeV$

DM annihilation in galaxy clusters

Pros

- Largest bound structures
- High M_{DM}
- Steep DM profile
- Nearby
- multi-v SEDs

Cons

- Interaction/merging
 I sufficient time to disrupt cusps ?!
- Non-gravitational heating in cores
 I is DM mass profile reliable ?!
- Non-thermal phenomena [cosmic-ray physics!

Constraints from Coma

Radio halo

- integrated spectrum (30 MHz-5 GHz)
- brightness distribution (@ 1.4 GHz)

[Colafrancesco, Profumo & Ullio 2005 - 2006]

Constraints from Coma: multi – v

Dependence from B

\bigwedge Constraints on χ physics

Heating by DM annihilation

[Colafrancesco, Dar & DeRujua 2004]

SZ effect from $\chi\chi$ annihilation

SZ effect from DM

The case of Coma

SZE in pure DM halos

CMB maps & DRACO

Figure 3. $M_{\chi} - T_B$ plane for three cusped dSph profiles, with an assumed NFW profile for the Milky Way (isothermal power-law models give almost identical results). We assume a 1" beam at 100GHz, and display the brightness temperature sensitivity for 24 hr and 1 yr ALMA observation.

[Culverhouse, Ewans & Colafrancesco 2006]

DM annihilation in Dwarf galaxies

 ${\rm (v^{2})^{1/2}} ~{\rm (km/s)}$

 $M(<\!r)~(10^8~M_{\odot})$

20

15

10

5

1.5

0.5

0

0

Pros

- High M/L ratio
- Steep DM profile
- Flat <v²>^{1/2}
- Very close
- multi-v SEDs

Cons

- Interaction/merging
 I sufficient time to disrupt cusps ?!
- BH–DM interaction on r ≤ 1 pc
 I is DM mass profile reliable ?!
- Dynamical equilibrium stage [] is M/L reliable ?!

Draco: multi-n SED

[Colafrancesco, Profumo & Ullio 2006]

<σV> normalized to recover the EGRET limit

Draco: multi-n SED

DRACO: limits

DRACO: projected sensitivities

73

Combining Astro-Cosmo-Particle

W[±] χ model

NFW profile

NFW profile

A Looking deeper into dark halos

THANKS

for your attention !