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Objective

Extract optimal arrival direction information
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Angular Resolution for Surface Detector

e From experimental data

e Using the information from the geometrical reconstruction
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Angular Resolution

The Angular Resolution is defined by the angular radius contour that
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Angular Resolution

The Angular Resolution is defined by the angular radius contour that
contains 68% of the event coming from a point source.

n is the spacial angle
F(n)="% (V[0] + sin*@) V[¢]) @ is the zenith angle

¢ is the azimuth angle

If @ and ¢/sin(@) have Gaussian distribution with variance o2, then
F(n) = 0% and p has distribution proportional to exp {-7%2c? d(cos(57))d¢p

The relation between ¢ and the angular resolution is: AR = 1.5 o
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Angular Resolution from Experimental Data

SD Resolution depends on:

e Determination of time of arrival of shower front in the stations
e Shower front shape

e Core position uncertainty (from the LDF model used)

Time Variance Modd: Model the measurement error of the FADC
traces start time based on physics and shower/tank parameters:.

e Zenith angle, energy, signal, distance to core, rise time

Validate model with real data: Doublets and hybrids

Data set: January 2004 to March 2006
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Time Variance Model

Shower front described as a Poisson process (n particles
arriving uniformly within time T)

V[TS]=a2( 1111+11 )+ b2

n
2.2F : Francesco: PMT 2
2;_ Signal: 12.59 VEM
1.8¢ Area/Peak: 5.77
1.8 ;_ Threshold
1.4
125 ] T=2T,
1 ;— X > >
0.8F U
0.6
0.4 U
0.2F !

ol T Y | i1 S | | I ] R e L1
-gﬂﬂ 0 500 1000 1500 2000 2500 3000




Time Variance Model

Shower front described as a Poisson process (n particles
arriving uniformly within time T)

ey (21 (22 ) e




Time Variance Model

Shower front described as a Poisson process (n particles
arriving uniformly within time T)

v (21 (220) e




Time Variance Model

Shower front described as a Poisson process (n particles
arriving uniformly within time T)

e G5 @
e

S = Integrated Signal in VEM

S
TL(0)

n=




Time Variance Model

Shower front described as a Poisson process (n particles
arriving uniformly within time T)
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Time Variance Model

Shower front described as a Poisson process (n particles
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Time Variance Model

Shower front described as a Poisson process (n particles
arriving uniformly within time T)

g =a (2T (221w

Can be predicted

a=1

b=12ns =+ 252/12+10> (FADC resolution + GPS accuracy)
or adjusted on the doublet data...
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Time Variance Model

Shower front described as a Poisson process (n particles
arriving uniformly within time T)

g =a (2T (221w

Can be predicted
a=1

b=12ns =+ 252/12+10> (FADC resolution + GPS accuracy)
or adjusted on the doublet data

a=1.00+0.03
b=12ns+1ns

Extraordinarily consistent !




Doublets

Verifying model quality on doublet data:
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Doublets

Verifying model quality on doublet data:
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All Data

v? probability distribution:
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All Data

AR = 1.5 V(V[0] + V[0]sin%(0))/2

Resolution extracted from the geometrical reconstruction
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All Data

AR = 1.5 V(V[0] + V[d]sin2(6))/2

Resolution extracted from the full reconstruction
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Comparison with hybrid data
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Comparison with hybrid data

e Good angular resolution in the arrival direction
e Low statistics

Angular resolution for hybrid events was obtained with
the same formula used for SD-only evert«

AR = 1.5 V(V[O] + V[$]sin*(0))/2
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Comparison with hybrid data

e Good angular resolution in the arrival direction
e Low statistics

Angular resolution for hybrid events was obtained with
the same formula used for SD-only evert«

AR = 1.5 V(V[0] + V[d]sin2(8))/2 | \
(hez e K4

# Tank AR \”’ %ﬁ )

3 0.8° ‘ /1

4 0.7°
5 0.6°
6

> 0.5°




Comparison with hybrid data

Hybrid geometrical
reconstruction (0,0)

SD-only geometrical
reconstruction (0,9)
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Comparison with hybrid data

Hybrid geometrical
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Comparison with hybrid data

# Stations | ¢ range oy T Eyb OSD—only | Osp from o,
3 [07; 30°] 1.7 0.6° 1.8° 1.67
5 307; 50°] 1.5° 0.6° 1.8° 1.4°
4 30°; 50°] 1.3° 0.5° 1.1° 1.2°
5 [ 307 50°] 1.0° 0.4° 1.0° 0.9°
6 or more | [30°;50°] 0.8° 0.4° 0.6° 0.7°
6 or more | [50°;70°] 0.6° 0.3° 0.4° 0.5°
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Comparison with hybrid data

# Stations | ¢ range oy T Eyb OSD—only | Osp from o,
3 [07; 30°] 1.7° 0.6° 1.8° 1.6°
3 307; 50°] 1.5° 0.6° 1.8° 1.:4°
4 30°; 50°] 1.3° 0.5° '
5 30°; 50°] 1:8¢ 0.4°
6 or more | [30°;50°] 0.8° 0.4°
6 or more | [50°;70°] 0.6° 0.3°
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Conclusions

@ The angular resolution is determined experimentally for the
surface detector an event by event.

@ We have tools to cross check the model used to compute the
uncertainties of the arrival time of the shower front in the tanks:
Doublets comparisons
«?> probability distribution
Comparison with the hybrid data

®@ The surface detector only angular resolution is found to better
than:
2.7° for 3-fold events (E < 4 EeV)
1.7° for 4-fold/5-fold events (3 EeV < E < 10 EeV)

1.0° for higher multiplicity (E > 10 EeV)
Thank you !




