

The Angular Resolution of the Pierre Auger Observatory

Carla Bonifazi CBPF – CNRS/In2p3

Pierre Auger Collaboration

Vulcano Workshop 2006 - Frontier Objects in Astrophysics and Particle Physics May 21 – 27, Vulcano, Italy

Objective

Extract optimal arrival direction information

• From experimental data

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

Ground

- From experimental data
- Using the information from the geometrical reconstruction

Tanks		
		Ground

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

- From experimental data
- Using the information from the geometrical reconstruction

Angular Resolution

The Angular Resolution is defined by the angular radius contour that contains 68% of the event coming from a point source.

Angular Resolution

The Angular Resolution is defined by the angular radius contour that contains 68% of the event coming from a point source.

 $F(\boldsymbol{\eta}) = \frac{1}{2} \left(\mathbf{V}[\boldsymbol{\theta}] + \sin^2(\boldsymbol{\theta}) \mathbf{V}[\boldsymbol{\phi}] \right)$

- η is the spacial angle
- $\boldsymbol{\theta}$ is the zenith angle
- ϕ is the azimuth angle

If $\boldsymbol{\theta}$ and $\boldsymbol{\phi}/\sin^2(\boldsymbol{\theta})$ have Gaussian distribution with variance σ^2 , then $F(\boldsymbol{\eta}) = \sigma^2$, and $\boldsymbol{\eta}$ has distribution proportional to exp $\{-\boldsymbol{\eta}^2/2\sigma^2\}$ d(cos($\boldsymbol{\eta}$)) d $\boldsymbol{\phi}$

The relation between σ and the angular resolution is: AR = 1.5 σ

SD Resolution depends on:

SD Resolution depends on:

• Determination of time of arrival of shower front in the stations

SD Resolution depends on:

- Determination of time of arrival of shower front in the stations
- Shower front shape

SD Resolution depends on:

- Determination of time of arrival of shower front in the stations
- Shower front shape
- Core position uncertainty (from the LDF model used)

SD Resolution depends on:

- Determination of time of arrival of shower front in the stations
- Shower front shape
- Core position uncertainty (from the LDF model used)

Time Variance Model: Model the measurement error of the FADC traces start time based on physics and shower/tank parameters:

• Zenith angle, energy, signal, distance to core, rise time

SD Resolution depends on:

- Determination of time of arrival of shower front in the stations
- Shower front shape
- Core position uncertainty (from the LDF model used)

Time Variance Model: Model the measurement error of the FADC traces start time based on physics and shower/tank parameters:

• Zenith angle, energy, signal, distance to core, rise time

Validate model with real data: Doublets and hybrids

SD Resolution depends on:

- Determination of time of arrival of shower front in the stations
- Shower front shape
- Core position uncertainty (from the LDF model used)

Time Variance Model: Model the measurement error of the FADC traces start time based on physics and shower/tank parameters:

• Zenith angle, energy, signal, distance to core, rise time

Validate model with real data: Doublets and hybrids

Data set: January 2004 to March 2006

$$V[T_s] = a^2 \left(\frac{2T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + b^2$$

$$V[T_s] = a^2 \left(\frac{2 T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + b^2$$

$$V[T_s] = a^2 \left(\frac{2T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + b^2$$

$$V[T_s] = a^2 \left(\frac{2 T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + b^2$$

Shower front described as a Poisson process (n particles arriving uniformly within time T)

$$V[T_{S}] = a^{2} \left(\frac{2T_{S0}}{n}\right)^{2} \left(\frac{n+1}{n+1}\right) + b^{2}$$
$$n = \frac{S}{TL(\theta)}$$

S = Integrated Signal in VEM

Shower front described as a Poisson process (n particles arriving uniformly within $\frac{14}{2}$

Shower front described as a Poisson process (n particles arriving uniformly within time T)

$$V[T_s] = a^2 \left(\frac{2T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + b^2$$

Shower front described as a Poisson process (n particles arriving uniformly within time T)

$$V[T_s] = \mathbf{a}^2 \left(\frac{2 T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + \mathbf{b}^2$$

Shower front described as a Poisson process (n particles arriving uniformly within time T)

$$V[T_s] = \mathbf{a}^2 \left(\frac{2 T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + \mathbf{b}^2$$

Can be predicted

a = **1**

b = 12 ns = $\sqrt{25^2/12+10^2}$ (FADC resolution + GPS accuracy)

Shower front described as a Poisson process (n particles arriving uniformly within time T)

$$V[T_s] = \mathbf{a}^2 \left(\frac{2 T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + \mathbf{b}^2$$

Can be predicted

a = 1

b = 12 ns = $\sqrt{25^2/12+10^2}$ (FADC resolution + GPS accuracy) or adjusted on the doublet data...

.

$$\mathfrak{L} = \prod_{k=1}^{N} \frac{1}{\sqrt{2\pi V[\Delta T_k]}} e^{-\frac{\Delta T_k^2}{2 V[\Delta T_k]}}$$

Shower front described as a Poisson process (n particles arriving uniformly within time T)

$$V[T_s] = \mathbf{a}^2 \left(\frac{2 T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + \mathbf{b}^2$$

Can be predicted

a = 1

b = 12 ns = $\sqrt{25^2/12+10^2}$ (FADC resolution + GPS accuracy)

or adjusted on the doublet data

 $a = 1.00 \pm 0.03$

 $\mathbf{b} = \mathbf{12} \ \mathbf{ns} \pm \mathbf{1} \ \mathbf{ns}$

Shower front described as a Poisson process (n particles arriving uniformly within time T)

$$V[T_s] = \mathbf{a}^2 \left(\frac{2 T_{50}}{n}\right)^2 \left(\frac{n-1}{n+1}\right) + \mathbf{b}^2$$

Can be predicted

a = 1

b = 12 ns = $\sqrt{25^2/12+10^2}$ (FADC resolution + GPS accuracy) or adjusted on the doublet data

 $a = 1.00 \pm 0.03$

 $\mathbf{b} = \mathbf{12} \ \mathbf{ns} \pm \mathbf{1} \ \mathbf{ns}$

Extraordinarily consistent !

Verifying model quality on doublet data:

.

Verifying model quality on doublet data:

All Data

χ^2 probability distribution:

All Data

$$AR = 1.5 \sqrt{(V[\theta] + V[\phi]\sin^2(\theta))/2}$$

Resolution extracted from the **geometrical reconstruction**

All Data

$$AR = 1.5 \sqrt{(V[\theta] + V[\phi]\sin^2(\theta))/2}$$

Resolution extracted from the **full reconstruction**

Comparison with hybrid data Miguel Mostafá (next talk)

• Good angular resolution in the arrival direction

- Good angular resolution in the arrival direction
- Low statistics

- Good angular resolution in the arrival direction
- Low statistics

Angular resolution for hybrid events was obtained with the same formula used for SD-only events

- Good angular resolution in the arrival direction
- Low statistics

Angular resolution for hybrid events was obtained with the same formula used for SD-only events

 $AR = 1.5 \sqrt{(V[\theta] + V[\phi]sin^2(\theta))/2}$

- Good angular resolution in the arrival direction
- Low statistics

Angular resolution for hybrid events was obtained with the same formula used for SD-only events

AR = 1	$1.5 \sqrt{V}$	$V[\theta] + V$	$V[\phi]\sin^2\phi$	$(\theta))/2$
AR = 1	$1.5 \sqrt{V}$	$V[\theta] + V$	$V[\phi]\sin^2\phi$	$(\boldsymbol{\theta}))/2$

# Tank	AR
3	0.8°
4	0.7°
5	0.6°
≥6	0.5°

# Stations	θ range	σ_η	σ_{Hyb}	$\sigma_{SD-only}$	σ_{SD} from σ_{η}
3	[0°; 30°]	1.7°	0.6°	1.8°	1.6°
3	[30°; 50°]	1.5°	0.6°	1.8°	1.4°
4	[30°; 50°]	1.3°	0.5°	1.1°	1.2°
5	[30°; 50°]	1.0°	0.4°	1.0°	0.9°
6 or more	[30°;50°]	0.8°	0.4°	0.6°	0.7°
6 or more	[50°;70°]	0.6°	0.3°	0.4°	0.5°

# Stations	θ range	σ_η	σ_{Hyb}	$\sigma_{SD-only}$	σ_{SD} from σ_{η}
3	[0°; 30°]	1.7°	0.6°	1.8°	1.6°
3	[30°; 50°]	1.5°	0.6°	1.8°	1.4°
4	[30°; 50°]	1.3°	0.5°	1.1°	1.2°
5	[30°; 50°]	1.0°	0.4°	1.0°	0.9°
6 or more	[30°;50°]	0.8°	0.4°	0.6°	0.7°
6 or more	[50°;70°]	0.6°	0.3°	0.4°	0.5°

# Stations	θ range	σ_η	σ_{Hyb}	$\sigma_{SD-only}$	σ_{SD} from σ_{η}
3	[0°; 30°]	1.7°	0.6°	1.8°	1.6°
3	[30°; 50°]	1.5°	0.6°	1.8°	1.4°
4	[30°; 50°]	1.3°	0.5°	1.1°	1.2°
5	[30°; 50°]	1.0°	0.4°	1.0°	0.9°
6 or more	[30°;50°]	0.8°	0.4°	0.6°	0.7°
6 or more	[50°;70°]	0.6°	0.3°	0.4°	0.5°

• The angular resolution is determined **experimentally** for the surface detector **an event by event**.

- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have **tools to cross check** the model used to compute the uncertainties of the arrival time of the shower front in the tanks:

- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have **tools to cross check** the model used to compute the uncertainties of the arrival time of the shower front in the tanks: **Doublets comparisons**

- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have **tools to cross check** the model used to compute the uncertainties of the arrival time of the shower front in the tanks: **Doublets comparisons**
 - χ^2 probability distribution

- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have tools to cross check the model used to compute the uncertainties of the arrival time of the shower front in the tanks:
 Doublets comparisons
 χ² probability distribution
 Comparison with the hybrid data
- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have tools to cross check the model used to compute the uncertainties of the arrival time of the shower front in the tanks:
 Doublets comparisons
 χ² probability distribution
 Comparison with the hybrid data
- The **surface detector only angular resolution** is found to better than:

- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have tools to cross check the model used to compute the uncertainties of the arrival time of the shower front in the tanks:
 Doublets comparisons
 χ² probability distribution
 Comparison with the hybrid data
- The **surface detector only angular resolution** is found to better than:

2.7° for 3-fold events (E < 4 EeV)

- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have tools to cross check the model used to compute the uncertainties of the arrival time of the shower front in the tanks:
 Doublets comparisons
 χ² probability distribution
 Comparison with the hybrid data
- The **surface detector only angular resolution** is found to better than:

2.7° for 3-fold events (E < 4 EeV)

1.7° for 4-fold/5-fold events (3 EeV < E < 10 EeV)

- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have tools to cross check the model used to compute the uncertainties of the arrival time of the shower front in the tanks:
 Doublets comparisons
 χ² probability distribution
 Comparison with the hybrid data
- The **surface detector only angular resolution** is found to better than:
 - 2.7° for 3-fold events (E < 4 EeV)
 - 1.7° for 4-fold/5-fold events (3 EeV < E < 10 EeV)

 1.0° for higher multiplicity (E > 10 EeV)

- The angular resolution is determined **experimentally** for the surface detector **an event by event**.
- We have tools to cross check the model used to compute the uncertainties of the arrival time of the shower front in the tanks:
 Doublets comparisons
 χ² probability distribution
 Comparison with the hybrid data
- The **surface detector only angular resolution** is found to better than:
 - 2.7° for 3-fold events (E < 4 EeV)
 - 1.7° for 4-fold/5-fold events (3 EeV < E < 10 EeV)

1.0° for higher multiplicity (E > 10 EeV)

Thank you !