

Status, Future of GEMC

Maurizio Ungaro

gemc is a C++ program that simulates particles through matter using the geant4 libraries.

gemc is a C++ program that simulates particles through matter using the geant4 libraries.

gemc is a C++ program that simulates particles through matter using the geant4 libraries.

Factory Method for Hit Processes

Output (factory)

TXT output:

-OUTPUT="txt, data.txt"

EVIO OUTPUT:

-OUTPUT="evio, data.ev"

Event Generation

- 1) With gemc internal generator
- 2) LUND Format for physics events:

8	34406	0	0.	0. 0.	Ο.	Ο.	0. 0.							
	1	0	1	2212	0	0	0.000	0.000	0.000	0.938	0.938	0.000	0.000	0.000
	2	0	1	11	0	0	0.401	-0.605	5.517	5.565	0.001	0.000	0.000	0.000
	3	0	1	211	0	0	-0.305	0.296	3.417	3.446	0.140	0.000	0.000	0.000
	4	0	1	2112	0	0	-0.379	-0.062	1.627	1.918	0.940	0.000	0.000	0.000
	5	0	1	-211	0	0	-0.015	0.114	0.098	0.205	0.140	0.000	0.000	0.000
	6	0	1	211	0	0	0.137	0.406	0.306	0.545	0.140	0.000	0.000	0.000
	7	0	1	22	0	0	0.162	-0.070	0.041	0.181	0.000	0.000	0.000	0.000
	8	0	1	22	0	0	-0.001	-0.078	-0.006	0.079	0.000	0.000	0.000	0.000
9	34407	0	Ο.	0. 0.	0.	0.	0. 0.							
	1	0	1	2212	0	0	0.000	0.000	0.000	0.938	0.938	0.000	0.000	0.000
	2	0	1	11	0	0	0.340	0.384	2.811	2.857	0.001	0.000	0.000	0.000
	3	0	1	-211	0	0	-0.114	0.357	3.700	3.721	0.140	0.000	0.000	0.000
	4	0	1	2212	0	0	-0.002	-0.776	1.742	2.126	0.938	0.000	0.000	0.000
	5	0	1	211	0	0	0.336	-0.200	0.941	1.029	0.140	0.000	0.000	0.000
	6	0	1	22	0	0	-0.141	0.107	0.033	0.180	0.000	0.000	0.000	0.000
	7	0	1	22	0	0	-0.044	0.118	-0.067	0.143	0.000	0.000	0.000	0.000
	8	0	1	22	0	0	-0.150	0.021	0.455	0.480	0.000	0.000	0.000	0.000
	9	0	1	22	0	0	-0.225	-0.010	1.384	1.402	0.000	0.000	0.000	0.000

To all these "primary" particles, a luminosity beam can be added

TMD Montecarlo Workshop

Luminosity Beam

- Number of Beam Particle / One single Event
- Time Window of the event
- Time Structure of the Event: "bunches" time separation

60000 electrons / event 1 event = 120 nanoseconds Bunches every 2 nanoseconds (60 bunches, 500 electron each bunch) Physics event generated in the middle (60 ns)

Physics Processes Databases

LHEP Physics Lists

The LHEP Physics lists are based on a parameterized modeling for all hadronic interactions for all particles. Based on Geisha model. Example:

LHEP_BERT (Bertini Cascade)

String model based physics lists

These Physics lists apply a string models for the modeling of interactions of high energy hadrons, i.e. for protons, neutrons, pions and Kaons above ~(5-25) GeV. Examples:

QGSP: quark gluon string model QGSC: CHIPS modeling for the nuclear de-excitation QGSC_BERT: Bertini cascade for primary protons, neutrons, pions and Kaons below ~10GeV. (recommended for CLAS12)

Optical Processes in GEMC

Physics Processes Databases

Future: factory process

Model the physics processes in the external database:

- Can turn on/off single processes for all/individual particles (very useful for eg5 comparison and debugging in general)
- Can modify energy range of applicability of processes (e.g. Bertini cascade model, Low energy parameterization, etc)

Hit Types Databases

 "FLUX" type: every track has its own hit. Good for counting purposes (i.e. how many protons pass through a detector, etc)

Hit Types Databases

Signal Modeling Parameterization:

Each Scintillator, Tube, etc, modeled by a few parameters in DB

Geometry Database

Extension to GDML input (output is supported thanks to Maurik) Hall-D extension? LCSIM extension?

Materials Database

Future: Factory Method

Materials will be defined in DB GDML Extension

(last hurdle to complete the code-writing independence)

TMD Montecarlo Workshop

Geometry Overview

Geometry: FST Implementation

Engineering Design

Geant4 Implementation

Geometry: CTOF

50 Trapezoidal Paddles

Thickness: 1.24"

Geometry Parameters: Same as designers

Geometry: Central Detector

SVT CTOF Light Guides Solenoid Møller Shield

Geometry: FT Configuration

1.5 and 5.5 deg shields allow DVCS gammas into IC (optimization in progress)

HTCC in GEMC

Geometry: DC

3 Regions 2 SuperLayers per Region 6 Layers per SuperLayer

Geometry Parameters: same as designers

TMD Montecarlo Workshop

Geometry: FTOF

Panel 1a: 23 paddles

Panel 1B: 58 paddles

Panel 2B: 5 paddles

RICH for CLAS12

RICH Detector

CLAS12 Geometry

Background Studies

TMD Montecarlo Workshop

Magnetic Fields

Definitions in DB Association to volume by name Map based

Currently:

Torus Solenoid Transverse Polarized Target Dipoles (Frascati Magnets, Pair Spectrometer)

Summary: gemc.jlab.org

GEMC

Overview

gemc (GEant4 MonteCarlo) is a simulation software based on Geant4 .

The simulation parameters are external to the software: Geometry, Materials, Fields, Banks definitions are stored in an external database. The Factory Method is used for the Hit Processes/Digitization Routines and for the Input/Output formats.

The Database

gemc supports *mysql* as the external database. The informations stored in the database determine:

- The Geometry.
- Sensitive Detectors definitions (including Thresholds, Time Window, Production Cut).
- The Hit Process Factories.

Main Page | Data Structures | Files

- The Bank Output Format.
- The Magnetic Fields definitions.

Software Requirement:

- geant4 (simulation libraries)
- · clhep (random generators, physics vectors, geometry and linear algebra libraries)
- qt4 (graphic libraries)
- mysql
- scons (build system)

Platforms Supported:

Se