Why Monte Carlo generators? Theory point of view

A. Bacchetta "TMD Monte Carlo" Frascati, 7 Nov 2011

Two types of generators

• Full event generators (Pythia, Lepto...) All final-state particles are generated • Full event generators (Pythia, Lepto...) All final-state particles are generated • Full event generators (Pythia, Lepto...) All final-state particles are generated

 Generators for single-particle (or two-particle) inclusive DIS (gmc_trans, TMDgen, ResBos...)
Only one or two final-state particles are generated

Single-particle DIS generator

Something about full event generators

Example of fragmentation model

Example of fragmentation model

What are they used for?

What are they used for?

Predictions of unmeasured cross sections

- Predictions of unmeasured cross sections
- Systematic studies

- Predictions of unmeasured cross sections
- Systematic studies
- Search for new physics

- Predictions of unmeasured cross sections
- Systematic studies
- Search for new physics
- Access to quantities that are not directly measurable (i.e., W-boson mass)

Strong points of event generators

Gives a full description of the final state, in all kinematic regions

- Gives a full description of the final state, in all kinematic regions
- Very sophisticated implementations, containing many ingredients

Strong points of event generators

- Gives a full description of the final state, in all kinematic regions
- Very sophisticated implementations, containing many ingredients
- Parameters well tuned

- Gives a full description of the final state, in all kinematic regions
- Very sophisticated implementations, containing many ingredients
- Parameters well tuned
- Excellent coding, based on years of experience

Full description of the final state

simulation for CLAS12

Comparison with SIDIS generators

Comparison with SIDIS generators

Comparison with SIDIS generators

Example of results

Figure 6.1: Comparison between the distributions of selected DIS and SIDIS kinematic variables obtained from real events and from events generated by PYTHIA.

Thesis of L. Pappalardo

• Do not include spin

- Do not include spin
- Based on semi-classical picture (difficult to include quantum interference)

- Do not include spin
- Based on semi-classical picture (difficult to include quantum interference)
- Difficult to modify
Some limitations of full event generators

- Do not include spin
- Based on semi-classical picture (difficult to include quantum interference)
- Difficult to modify
- Semi-inclusive DIS is not their main focus

Some limitations of full event generators

- Do not include spin
- Based on semi-classical picture (difficult to include quantum interference)
- Difficult to modify
- Semi-inclusive DIS is not their main focus
- Computationally intensive

Possible developments

 Inclusion of spin into the microscopic fragmentation mechanism Artru, arXiv:1001.1061; Bianconi, arXiv:1109.0688, Kotzinian, hep-ph/0510359 Inclusion of spin into the microscopic fragmentation mechanism Artru, arXiv:1001.1061; Bianconi, arXiv:1109.0688, Kotzinian, hep-ph/0510359 Inclusion of spin into the microscopic fragmentation mechanism Artru, arXiv:1001.1061; Bianconi, arXiv:1109.0688, Kotzinian, hep-ph/0510359

 Artificial modulation of the final cross section based on polarized cross-section (reweighting). Often used by experimental collaborations. No publication?

Something about SIDIS generators

• All kinds of signals can be introduced in principle

- All kinds of signals can be introduced in principle
- Simple and fast

- All kinds of signals can be introduced in principle
- Simple and fast
- Very close to theoretical formulas and theoretical parametrizations

- All kinds of signals can be introduced in principle
- Simple and fast
- Very close to theoretical formulas and theoretical parametrizations
- Can be in principle extended to higher orders

Inclusive DIS

 $\ell(l) + N(P) \to \ell(l') + X$

Structure functions

$$\begin{aligned} \frac{d\sigma}{dx_B \, dy \, d\phi_S} &= \frac{2\alpha^2}{x_B y Q^2} \left\{ \left(1 - y + \frac{y^2}{2}\right) F_{UU,T} + (1 - y) F_{UU,L} + S_L \lambda_e \, y \left(1 - \frac{y}{2}\right) F_{LL} \right. \\ &+ \left| \boldsymbol{S}_T \right| \lambda_e \, y \sqrt{1 - y} \, \cos \phi_S \, F_{LT}^{\cos \phi_s} \right\} \end{aligned}$$

see, e.g., A.B., Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)

Structure functions

$$\frac{d\sigma}{dx_B \, dy \, d\phi_S} = \frac{2\alpha^2}{x_B y Q^2} \left\{ \left(1 - y + \frac{y^2}{2}\right) F_{UU,T} + (1 - y) F_{UU,L} + S_L \lambda_e \, y \left(1 - \frac{y}{2}\right) F_{LL} + |S_T| \lambda_e \, y \sqrt{1 - y} \, \cos \phi_S \, F_{LT}^{\cos \phi_s} \right\}$$

see, e.g., A.B., Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)

Results for inclusive DIS

Results for inclusive DIS

$$F_{UU,T} = x_B \sum_{a} e_a^2 f_1^a(x_B)$$
$$F_{UU,L} = 0$$
$$F_{LL} = x_B \sum_{a} e_a^2 g_1^a(x_B)$$
$$F_{LT}^{\cos \phi_S} = -\gamma x_B \sum_{a} e_a^2 g_T^a(x_B)$$

Semi-inclusive DIS

 $\ell(l) + N(P) \to \ell(l') + h(P_h) + X,$

A.B., D'Alesio, Diehl, Miller, PRD70 (04)

Structure functions

$$\begin{split} \frac{d\sigma}{dx\,dy\,d\phi_S\,dz\,d\phi_h\,dP_{h\perp}^2} \\ &= \frac{\alpha^2}{x\,y\,Q^2}\,\frac{y^2}{2\,(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon\,F_{UU,L} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\cos\phi_h\,F_{UU}^{\cos\phi_h} + \varepsilon\,\cos(2\phi_h)\,F_{UU}^{\cos\,2\phi_h} \\ &+ \lambda_e\,\sqrt{2\,\varepsilon(1-\varepsilon)}\,\sin\phi_h\,F_{LU}^{\sin\phi_h} + S_L\left[\sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_h\,F_{UL}^{\sin\phi_h} + \varepsilon\,\sin(2\phi_h)\,F_{UL}^{\sin\,2\phi_h}\right] \\ &+ S_L\,\lambda_e\left[\sqrt{1-\varepsilon^2}\,F_{LL} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_h\,F_{LL}^{\cos\phi_h}\right] \\ &+ S_T\left[\sin(\phi_h - \phi_S)\left(F_{UT,T}^{\sin(\phi_h - \phi_S)} + \varepsilon\,F_{UT,L}^{\sin(\phi_h - \phi_S)}\right) + \varepsilon\,\sin(\phi_h + \phi_S)\,F_{UT}^{\sin(\phi_h + \phi_S)} \\ &+ \varepsilon\,\sin(3\phi_h - \phi_S)\,F_{UT}^{\sin(3\phi_h - \phi_S)} + \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin\phi_S\,F_{UT}^{\sin\phi_S} \\ &+ \sqrt{2\,\varepsilon(1+\varepsilon)}\,\sin(2\phi_h - \phi_S)\,F_{UT}^{\sin(2\phi_h - \phi_S)}\right] + S_T\lambda_e\left[\sqrt{1-\varepsilon^2}\,\cos(\phi_h - \phi_S)\,F_{LT}^{\cos(\phi_h - \phi_S)} \\ &+ \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos\phi_S\,F_{LT}^{\cos\phi_S} + \sqrt{2\,\varepsilon(1-\varepsilon)}\,\cos(2\phi_h - \phi_S)\,F_{LT}^{\cos(2\phi_h - \phi_S)}\right] \right\} \end{split}$$

see e.g. AB, Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)

Structure functions

$$\begin{aligned} \frac{d\sigma}{dx\,dy\,d\phi_{S}\,dz\,d\phi_{h}\,dP_{h\perp}^{2}} & F_{UU,T}(x,z,P_{h\perp}^{2},Q^{2}) \\ = \frac{\alpha^{2}}{x\,y\,Q^{2}}\frac{y^{2}}{2(1-\varepsilon)} \left\{ F_{UU,T} + \varepsilon F_{UU,L} + \sqrt{2\varepsilon(1+\varepsilon)}\cos\phi_{h} F_{UU}^{\cos\phi_{h}} + \varepsilon\cos(2\phi_{h}) F_{UU}^{\cos2\phi_{h}} \\ + \lambda_{e}\,\sqrt{2\varepsilon(1-\varepsilon)}\sin\phi_{h} F_{LU}^{\sin\phi_{h}} + S_{L}\left[\sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{h} F_{UL}^{\sin\phi_{h}} + \varepsilon\sin(2\phi_{h}) F_{UL}^{\sin2\phi_{h}}\right] \\ + S_{L}\,\lambda_{e}\left[\sqrt{1-\varepsilon^{2}} F_{LL} + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{h} F_{LL}^{\cos\phi_{h}}\right] \\ + S_{T}\left[\sin(\phi_{h} - \phi_{S})\left(F_{UT,T}^{\sin(\phi_{h} - \phi_{S})} + \varepsilon F_{UT,L}^{\sin(\phi_{h} - \phi_{S})}\right) + \varepsilon\sin(\phi_{h} + \phi_{S}) F_{UT}^{\sin(\phi_{h} + \phi_{S})} \\ + \varepsilon\sin(3\phi_{h} - \phi_{S}) F_{UT}^{\sin(3\phi_{h} - \phi_{S})} + \sqrt{2\varepsilon(1+\varepsilon)}\sin\phi_{S} F_{UT}^{\sin\phi_{S}} \\ + \sqrt{2\varepsilon(1+\varepsilon)}\sin(2\phi_{h} - \phi_{S}) F_{UT}^{\sin(2\phi_{h} - \phi_{S})}\right] + S_{T}\lambda_{e}\left[\sqrt{1-\varepsilon^{2}}\cos(\phi_{h} - \phi_{S}) F_{LT}^{\cos(\phi_{h} - \phi_{S})} \\ + \sqrt{2\varepsilon(1-\varepsilon)}\cos\phi_{S} F_{LT}^{\cos\phi_{S}} + \sqrt{2\varepsilon(1-\varepsilon)}\cos(2\phi_{h} - \phi_{S}) F_{LT}^{\cos(2\phi_{h} - \phi_{S})}\right]\right\} \end{aligned}$$

see e.g. AB, Diehl, Goeke, Metz, Mulders, Schlegel, JHEP093 (07)

Unpolarized sector

$$\begin{split} F_{UU,T} &= \mathcal{C} \left[f_1 D_1 \right], \\ F_{UU,L} &= \mathcal{O} \left(\frac{M^2}{Q^2}, \frac{q_T^2}{Q^2} \right), \\ F_{UU}^{\cos \phi_h} &= \frac{2M}{Q} \mathcal{C} \left[-\frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T}{M_h} \left(xh H_1^{\perp} + \frac{M_h}{M} f_1 \frac{\tilde{D}^{\perp}}{z} \right) - \frac{\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T}{M} \left(xf^{\perp} D_1 + \frac{M_h}{M} h_1^{\perp} \frac{\tilde{H}}{z} \right) \right], \\ F_{UU}^{\cos 2\phi_h} &= \mathcal{C} \left[-\frac{2 \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{k}_T \right) \left(\hat{\boldsymbol{h}} \cdot \boldsymbol{p}_T \right) - \boldsymbol{k}_T \cdot \boldsymbol{p}_T}{MM_h} h_1^{\perp} H_1^{\perp} \right], \end{split}$$

$$\mathcal{C}[wfD] = \sum_{a} x e_a^2 \int d^2 \boldsymbol{p}_T \, d^2 \boldsymbol{k}_T \, \delta^{(2)} \left(\boldsymbol{p}_T - \boldsymbol{k}_T - \boldsymbol{P}_{h\perp}/z \right) w(\boldsymbol{p}_T, \boldsymbol{k}_T) \, f^a(x, p_T^2) \, D^a(z, k_T^2),$$
List of structure functions

observable twist "SIDIS FT" $F_{UU,T}$ 2"SIDIS F_L" $F_{UU,L}$ 4 $F_{UU}^{\cos\phi_h}$ "Cahn" 3 $F_{UU}^{\cos 2\phi_h}$ "Boer-Mulders" 2 $F_{LU}^{\sin\phi_h}$ 3 $F_{UL}^{\sin\phi_h}$ 3 $F_{UL}^{\sin 2\phi_h}$ "Kotzinian-Mulders" $\mathbf{2}$ "SIDIS g₁" F_{LL} $\mathbf{2}$ "Polarized Cahn" $F_{LL}^{\cos\phi_h}$ 3 $F_{UT,T}^{\sin(\phi_h - \phi_S)}$ "Sivers" $\mathbf{2}$ $F_{UT,L}^{\sin(\phi_h - \phi_S)}$ 4 $F_{UT}^{\sin(\phi_h + \phi_S)}$ "Collins" $\mathbf{2}$ $F_{UT}^{\sin(3\phi_h - \phi_S)}$ "Pretzelosity" 2 $F_{UT}^{\sin\phi_S}$ 3 $F_{UT}^{\sin(2\phi_h - \phi_S)}$ 3 $F_{LT}^{\cos(\phi_h - \phi_S)}$ "Worm gear" 2"SIDIS g₂" $F_{LT}^{\cos\phi_S}$ 3 $F_{LT}^{\cos(2\phi_h - \phi_S)}$ 3

26

Unpolarized structure function

 $F_{UU,T} = \mathcal{C}[f_1 D_1]$

$$\mathcal{C}[wfD] = \sum_{a} x e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} d^{2} \boldsymbol{k}_{T} \, \delta^{(2)} (\boldsymbol{p}_{T} - \boldsymbol{k}_{T} - \boldsymbol{P}_{h\perp}/z) \, w(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}) \, f^{a}(x, p_{T}^{2}) \, D^{a}(z, k_{T}^{2}),$$

Gaussian ansatz

 $F_{UU,T} = \mathcal{C}[f_1 D_1]$

$$\begin{split} \mathcal{C}\big[wfD\big] &= \sum_{a} x e_{a}^{2} \int d^{2} \boldsymbol{p}_{T} \, d^{2} \boldsymbol{k}_{T} \, \delta^{(2)} \left(\boldsymbol{p}_{T} - \boldsymbol{k}_{T} - \boldsymbol{P}_{h\perp} / z\right) \, w(\boldsymbol{p}_{T}, \boldsymbol{k}_{T}) \, f^{a}(x, p_{T}^{2}) \, D^{a}(z, k_{T}^{2}), \\ f_{1}^{a}(x, p_{T}^{2}) &= \frac{f_{1}^{a}(x)}{\pi \langle p_{T}^{2} \rangle} e^{-\boldsymbol{p}_{T}^{2} / \langle p_{T}^{2} \rangle}, \qquad D_{1}^{a}(z, k_{T}^{2}) = \frac{D_{1}^{a}(z)}{\pi \langle K_{T}^{2} \rangle} e^{-z^{2} \boldsymbol{k}_{T}^{2} / \langle K_{T}^{2} \rangle} \\ \mathcal{C}[f_{1}D_{1}] &= \sum_{a} x e_{a}^{2} \frac{f_{1}(x) D_{1}(z)}{\pi (z^{2} \rho_{a}^{2} + \sigma_{a}^{2})} \, e^{-\boldsymbol{P}_{h\perp}^{2} / (z^{2} \rho_{a}^{2} + \sigma_{a}^{2})} \\ f_{1}^{a}(x, p_{T}^{2}) &= \frac{f_{1}^{a}(x)}{\pi \langle p_{T}^{2}(x) \rangle^{a}} e^{-\boldsymbol{p}_{T}^{2} / \langle p_{T}^{2}(x) \rangle^{a}}, \quad D_{1}^{a}(z, k_{T}^{2}) = \frac{D_{1}^{a}(z)}{\pi \langle K_{T}^{2}(z) \rangle^{a}} e^{-z^{2} \boldsymbol{k}_{T}^{2} / \langle K_{T}^{2}(z) \rangle^{a}} \end{split}$$

 Based on Gaussian ansatz. Cannot use non-Gaussian distributions (thus, many models cannot be implemented)

- Based on Gaussian ansatz. Cannot use non-Gaussian distributions (thus, many models cannot be implemented)
- Implements several leading-twist terms of the cross section

- Based on Gaussian ansatz. Cannot use non-Gaussian distributions (thus, many models cannot be implemented)
- Implements several leading-twist terms of the cross section
- First attempt at tuning the parameters of the unpolarized TMDs

- Based on Gaussian ansatz. Cannot use non-Gaussian distributions (thus, many models cannot be implemented)
- Implements several leading-twist terms of the cross section
- First attempt at tuning the parameters of the unpolarized TMDs
- Careful implementation of positivity bounds

Comparison with data

· Cohnoll

 z^2

unpublished!

 z^2

TMDgen

Extension of gmc_trans done by Steve Gliske

- Extension of gmc_trans done by Steve Gliske
- Includes non-Gaussian distributions

- Extension of gmc_trans done by Steve Gliske
- Includes non-Gaussian distributions
- Includes two-hadron inclusive DIS

- Extension of gmc_trans done by Steve Gliske
- Includes non-Gaussian distributions
- Includes two-hadron inclusive DIS
- Written in C++

Figure 3.1: Comparison of 1D kinematic distributions from TMDGen and Pythia, in 4π , for $\pi^+\pi^0$ dihadrons. Listing the rows from top to bottom, and within each row from left to right, the panels are respectively the $x, y, z, P_{h\perp}$, and M_h distributions. TMDGen data is designated with blue circles, and Pythia data designated with red open squares.

Thesis of S. Gliske

Lacks all subleading twist

- Lacks all subleading twist
- No TMD flavor dependence

- Lacks all subleading twist
- No TMD flavor dependence
- No QED radiative corrections

- Lacks all subleading twist
- No TMD flavor dependence
- No QED radiative corrections
- No TMD evolution

$$f_1(x, k_T; Q) = \frac{1}{2\pi} \int d^2 b_T e^{-ik_T \cdot b_T} \left[C \otimes f_1\left(\hat{x}; \frac{2e^{-\gamma_e}}{b_T}\right) \right] e^{-S'(b_T, Q)} e^{-S'_{\rm NP}(x, b_T, Q, \alpha_i)}$$

$$f_1(x, k_T; Q) = \frac{1}{2\pi} \int d^2 b_T e^{-ik_T \cdot b_T} \left[C \otimes f_1\left(\hat{x}; \frac{2e^{-\gamma_e}}{b_T}\right) \right] e^{-S'(b_T, Q)} e^{-S'_{\rm NP}(x, b_T, Q, \alpha_i)}$$
collinear PDF

$$f_1(x, k_T; Q) = \frac{1}{2\pi} \int d^2 b_T e^{-ik_T \cdot b_T} \left[C \otimes f_1\left(\hat{x}; \frac{2e^{-\gamma_e}}{b_T}\right) \right] e^{-S'(b_T, Q)} e^{-S'_{\rm NP}(x, b_T, Q, \alpha_i)}$$

Up Quark TMD PDF, x = .09

T. Rogers, M. Aybat, arXiv:1101.5057 Landry, Brock, Nadolsky, Yuan, PRD67 (03) P. Schweitzer, T. Teckentrup, A. Metz, PRD81(10)

 Already implements effect of gluon resummation, which is another way of including TMD evolution

- Already implements effect of gluon resummation, which is another way of including TMD evolution
- It's a generator "family" with several processes

- Already implements effect of gluon resummation, which is another way of including TMD evolution
- It's a generator "family" with several processes
- http://hep.pa.msu.edu/resum/index.html#SIDIS

Fourier-transformed TMDs

 Since the TMD evolution formalism is done in bT space, it may be useful to implement the Fourier-transformed formulas in the MC generator Since the TMD evolution formalism is done in bT space, it may be useful to implement the Fourier-transformed formulas in the MC generator Since the TMD evolution formalism is done in bT space, it may be useful to implement the Fourier-transformed formulas in the MC generator

• This may also useful to study Bessel-weighted extraction methods Boer, Gamberg, Musch, Prokudin, arXiv:1107.5294

Conclusions

Conclusions

• There is a lot to do.
Conclusions

- There is a lot to do.
- Every collaboration and even every analysis group uses its own different solution.

Conclusions

- There is a lot to do.
- Every collaboration and even every analysis group uses its own different solution.
- Not enough attention is devoted to publishing the ideas and share them.

Conclusions

- There is a lot to do.
- Every collaboration and even every analysis group uses its own different solution.
- Not enough attention is devoted to publishing the ideas and share them.
- I would personally focus first on SIDIS generators, although I think the effort of modifying full event generators is extremely interesting