Frascati, SuperB Meeting, November 11-12, 2005

Fast kickers design @ LNF-INFN

David Alesini

for the LNF Fast kickers study group*

(LNF-INFN, Frascati, Rome)

* F.Marcellini, P. Raimondi, S. Guiducci, L. Ficcadenti (Univ. Rome), B. Spataro

OUTLINE

- 1) General considerations on circular stripline kickers;
- 2) Correction of the deflecting field flatness using tapers;
- 3) DA Φ NE stripline kickers design;
- 4) Time schedule for kickers construction and HV tests @ LNF;

1) General considerations: transverse field profile properties

INFN

1) General considerations: kicker length and pulse length (1/2)

1) General considerations: kicker length and pulse length (2/2)

2) Correction of the deflecting field flatness using tapers (1/2)

a) The use of **tapers** between the accelerator components **reduces the intensity of wakefield** and HOM (impedance of the machine) with respect to the case of abrupt steps (large use in DA Φ NE because of the high current and low energy)

b) The **uniformity of the deflection** varies with different coverage angles

Possibility of simultaneously achieve:

- a) uniform transverse deflection as a function of the transverse position;
- b) tapered transition between the beam pipe and the kicker structure.

3) DA Φ NE stripline kickers design: transverse and longitudinal profile geometry

- a) Elliptical geometry has been chosen to have a minimum variation of the vertical dimension of the beam pipe between the dipole region and the injection one (that is after the dipole);
 b) Each appriate has the same Db and different Dw.
- b) Each sections has the same **Dh** and different **Dv**;
- c) The value of ϕ in each section has been optimized to have **50** Ω (output impedance of the pulsers);
- d) The value of **a** and **b** are the same for each sections and have been optimized together with the length L_k and L_T in order to contemporary achieve:
 - 1) the **optimum deflecting field uniformity** over the horizontal coordinate;
 - 2) a total "effective length" of the kicker compatible with the bunch spacing.

3) DA Φ NE stripline kickers design: optimization procedure

y [mm]

3) DA Φ NE stripline kickers design: 3D electromagnetic model

3) DAFNE stripline kickers design: mechanical drawings

	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL
Pulser and feedthrough tests								
Construction of the 1 st kicker								
HV test on the 1 st kicker								
Construction of other kickers and installation							$\langle \rangle$	

CONCLUSIONS

- 1) General considerations on circular stripline kickers have been done showing in particular:
 - a) variation of the efficiency of the deflecting field as a function of the coverage angle;
 - b) variation on the uniformity of the field as a function of the coverage angle;
- Parallelism between the DAΦNE injection kicker system and the ILC one from the point of view of pulse and kicker length, kicker aperture and total deflecting voltage;
- 3) Correction of the deflecting field flatness using tapers: general principle and application to the DA Φ NE new injection kicker design;
- 4) Time schedule for kickers construction and HV tests @ LNF;
- 5) Tests of other pulser are welcome!